[1] |
范紫月, 齐晓波, 曾麟岚, 等. 中国农业系统近40年温室气体排放核算[J]. 生态学报, 2022, 42(23):9470-9482.
|
[2] |
SONG X T, JU X T, TOPP C F E, et al. Oxygen regulates nitrous oxide production directly in agricultural soils[J]. Environmental science & technology, 2019, 53:12539-12547.
|
[3] |
DAVIDSON E. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860[J]. Nature geoscience, 2009, 2(9):659-662.
|
[4] |
TIAN H, XU R, CANADELL J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586:248-256.
|
[5] |
GAO B, JU X T, ZHANG Q, et al. New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors[J]. Biogeosciences, 2011, 8:3011-3024.
|
[6] |
ZHENG X, HAN S, HUANG Y, et al. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands[J]. Global biogeochemical cycles, 2004, 18(2):1-19.
|
[7] |
ZHOU F, SHANG Z Y, ZENG Z Z, et al. New model for capturing the variations of fertilizer-induced emission factors of N2O[J]. Global biogeochemical cycles, 2015, 29(6):885-897.
|
[8] |
RASHTI M R, WANG W J, MOODY P, et al. Fertiliser-induced nitrous oxide emissions from vegetable production in the world and the regulating factors: a review[J]. Atmospheric environment, 2015, 112:225-233.
|
[9] |
HENNERON L, KARDOL P, WARDLE D A, et al. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies[J]. New phytologist, 2020, 228(4):1269-1282.
|
[10] |
BAI Z H, LI X X, LU J, et al. Livestock housing and manure storage need to be improved in China[J]. Environmental science & technology, 2017, 51:8212-8214.
|
[11] |
BAGGS E M, REES R M, SMITH K A, et al. Nitrous oxide emission from soils after incorporating crop residues[J]. Soil use and management, 2000, 16:82-87.
|
[12] |
HUANG Y, ZOU J, ZHENG X, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios[J]. Soil biology and biochemistry, 2004, 36(6):973-981.
|
[13] |
HU X K, SU F, JU X T, et al. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes[J]. Environmental pollution, 2013, 176:198-207.
|
[14] |
ZHOU M, ZHU B, WANG S, et al. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta-analysis[J]. Global change biology, 2017, 23(10):4068-4083.
|
[15] |
王敬, 程谊, 蔡祖聪, 等. 长期施肥对农田土壤氮素关键转化过程的影响[J]. 土壤学报, 2016, 53(2):292-304.
|
[16] |
赵颖, 张金波, 蔡祖聪. 添加硝化抑制剂、秸秆及生物炭对亚热带农田土壤N2O排放的影响[J]. 农业环境科学学报, 2018, 37(5):1023-1034.
|
[17] |
孙莉, 高思佳, 储昭升, 等. 土地利用方式对洱海流域坝区土壤氮磷有机质含量的影响[J]. 环境科学研究, 2016, 29(9):1318-1324.
|
[18] |
王小淇, 索龙, 季雅岚, 等. 添加几种秸秆并淹水对海南土壤N2O和CH4排放的影响[J]. 环境科学学报, 2017, 37(10):4004-4010.
|
[19] |
李平, 朗漫, 李淼, 等. 不同施肥处理对东北黑土温室气体排放的短期影响[J]. 环境科学, 2018, 39(5):2360-2367.
|
[20] |
EDMEADES D C. The long-term effects of manures and fertilizers on soil productivity and quality: a review[J]. Nutrient cycling in agroecosystems, 2003, 66(2):165-180
|
[21] |
CHEN H H, LI X C, HU F, et al. Soil nitrous oxide emissions following crop residue addition: a meta-analysis[J]. Global change biology, 2013, 19(10):2956-2964.
doi: 10.1111/gcb.12274
pmid: 23729165
|
[22] |
宋贺, 王成雨, 陈清, 等. 长期秸秆还田对设施菜地土壤反硝化特征和N2O排放的影响[J]. 中国农业气象, 2014, 35(6):628-634.
|
[23] |
CAI Y, DING W, LUO J. Nitrous oxide emissions from Chinese maize-wheat rotation systems: a 3-year field measurement[J]. Atmospheric environment, 2013, 65(65):112-122.
|
[24] |
ZOU W X, LANG M, ZHANG L, et al. Ammonia-oxiding bacteria rather than ammonia-oxidizing archaea dominate nitrification in a nitrogen-fertilized calcareous soil[J]. Science of the total environment, 2021, 811:151402.
|
[25] |
焦亚鹏, 齐鹏, 王晓娇, 等. 施氮量对农田土壤有机氮组分及酶活性的影响[J]. 中国农业科学, 2020, 53(12):2423-2434.
doi: 10.3864/j.issn.0578-1752.2020.12.010
|
[26] |
马二登, 马静, 徐华, 等. 施肥对稻田N2O排放的影响[J]. 农业环境科学学报, 2009, 28(12):2453-2458.
|
[27] |
CAYUELA M L, SINICCO T, MONDINI C. Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil[J]. Applied soil ecology, 2009, 41(1):118-127.
|
[28] |
王学敏, 刘兴, 郝丽英, 等. 秸秆还田结合氮肥减施对玉米产量和土壤性质的影响[J]. 生态学杂志, 2020, 39(2):507-516.
|
[29] |
CAYUELA M L, VAN ZWIETEN L, SINGH B P, et al. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis[J]. Agriculture ecosystems & environment, 2014, 191:5-16.
|
[30] |
CLOUGH T J, CONDRON L M. Biochar and the nitrogen cycle: introduction[J]. Journal of environmental quality, 2010, 39(4):1218-1223.
pmid: 20830909
|
[31] |
ZHANG A, CUI L, PAN G, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China[J]. Agriculture ecosystems and environment, 2010, 139:469-475.
|
[32] |
CAYUELA M L, VAN ZWIETEN L, SINGH B P, et al. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis[J]. Agriculture ecosystems and environment, 2014, 191:5-16.
|
[33] |
夏龙龙, 颜晓元, 蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报, 2020, 39(4):834-841.
|
[34] |
LIU C, LU M, CUI J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis[J]. Global change biology, 2014, 20(5):1366-1381.
doi: 10.1111/gcb.12517
pmid: 24395454
|
[35] |
XIA L L, LAM S K, YAN X Y, et al. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance?[J]. Environmental science & technology, 2017, 51(31):7450-7457.
|
[36] |
BHATIA A, PATHAK H, JAIN N, et al. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains[J]. Atmospheric environment, 2005, 39(37):6976-6984.
|
[37] |
MA Y C, KONG X W, YANG B, et al. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management[J]. Agriculture, ecosystems and environment, 2013, 164:209-219.
|
[38] |
涂昊泽, 林杉, 王军, 等. 秸秆添加对长期施肥旱地红壤N2O和CO2排放的影响[J/OL]. 环境科学, https://link.cnki.net/urlid/11.1895.X.20230922.1320.014
|
[39] |
LENKA N K, LAL R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system[J]. Soil and tillage research, 2013, 126:78-89.
|
[40] |
CHEN L, ZHANG J B, ZHAO B Z, et al. Carbon mineralization and microbial attributes in straw-amended soils as affected by moisture levels[J]. Pedosphere, 2014, 24(2):167-177.
|
[41] |
刘四义, 张晓平, 梁爱珍, 等. 玉米和大豆秸秆还田初期对黑土CO2排放的影响[J]. 应用生态学报, 2015, 26(8):2421-2427
|
[42] |
WANG J Y, XIONG Z Q, KUZYAKOV Y. Biochar stability in soil: meta-analysis of decomposition and priming effects[J]. Global change biology bioenergy, 2015, 8(3):512-523.
|
[43] |
巨晓棠, 刘学军, 张福锁. 尿素与DCD和有机物料配施条件下氮素的转化和去向[J]. 中国农业科学, 2002, 35(2):181-186.
|
[44] |
王泳斌, 武均, 吕锦慧, 等. 不同氮素水平下有机物料添加对陇中黄土高原旱作农田N2O排放特征的影响[J]. 干旱地区农业研究, 2019, 37(1):108-115.
|
[45] |
LU J, BAI Z H, VEITHOF G L, et al. Accumulation and leaching of nitrate in soils in wheat-maize production in China[J]. Agricultural water management, 2019, 212:407-415.
|