[1] |
SINGH R P, SINGH P K, RUTKOSKI J, et al. Disease impact on wheat yield potential and prospects of genetic control[J]. Annual review of phytopathology, 2016, 54(1):303-322.
|
[2] |
李洪杰, 王晓鸣, 宋凤景, 等. 中国小麦品种对白粉病的抗性反应与抗病基因检测[J]. 作物学报, 2011, 37(6):943-954.
|
[3] |
ZHANG J, YANG H, HAN G, et al. Fine mapping of Pm71, a novel powdery mildew resistance gene from emmer wheat[J/OL]. The crop journal, 2025, doi: 10.1016/J.CJ.2025.01.003.
|
[4] |
姜英维. 小麦--簇毛麦易位系T6VS·6AL及Pm21基因的育种利用[D]. 南京: 南京农业大学, 2020.
|
[5] |
ZHOU R H, ZHU Z D, KONG X Y, et al. Development of wheat near-isogenic lines for powdery mildew resistance[J]. Acta agronomica sinica, 2005, 110(4):640-648.
|
[6] |
LI Y, WEI Z Z, FATIUKHA A, et al. TdPm60 identified in wild emmer wheat is an ortholog of Pm60 and constitutes a strong candidate for PmG16powdery mildew resistance[J]. Theoretical and applied genetics, 2021, 134(9):2777-2793.
|
[7] |
LIU Z, SUN Q, NI Z, et al. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer[J]. Euphytica, 2002, 123:21-29.
|
[8] |
POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant molecular biology reporter, 1997, 15:8-15.
|
[9] |
BIE T, ZHAO R, ZHU S, et al. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat[J]. Molecular breeding, 2015, 35(10):189.
|
[10] |
HAO M, LIU M, LUO J, et al. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat[J]. Frontiers in plant science, 2018, 9:1040.
|
[11] |
FRANCIS H A, LEITCH A R, KOEBNER R M D. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat[J]. Theoretical and applied genetics, 1995, 90(5):636-642.
doi: 10.1007/BF00222127
pmid: 24174021
|
[12] |
LAGUDAH E S, MCFADDEN H, SINGH R P, et al. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat[J]. Theoretical and applied genetics, 2006, 114(1):21-30.
|
[13] |
GONG B, GAO J, XIE Y, et al. Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL[J]. Theoretical and applied genetics, 2024, 137(10):246.
|
[14] |
张华, 任勇, 何员江, 等. 153份四川小麦主推品种和后备品系抗病基因的分子检测[J]. 麦类作物学报, 2022, 42(1):26-35.
|
[15] |
徐志, 王胜, 张重梅, 等. 2014-2016年四川盆地小麦白粉病菌毒性分析[J]. 麦类作物学报, 2019, 39(2):247-252.
|
[16] |
李生荣, 杜小英, 任勇, 等. 国审小麦新品种绵麦367和绵麦51及高产栽培技术[J]. 农业科技通讯, 2014(6):206-208.
|
[17] |
杜海梅, 李生荣, 何员江, 等. 绵麦37及其衍生小麦品种(系)的6VS/6AL易位染色体结构演变[J].麦类作物学报, 2019, 39(6):659-665.
|
[18] |
JIN Y, XIAO L, ZHENG J, et al. Genetic analysis and molecular identification of the powdery mildew resistance in 116 elite wheat cultivars/lines[J]. Plant disease, 2023, 107(12):3801-3809.
doi: 10.1094/PDIS-04-23-0792-RE
pmid: 37272049
|
[19] |
ZHANG Q, LI Y, LI Y, et al. Introgression of the powdery mildew resistance genes Pm60 and Pm60b from Triticum urartu to common wheat using durum as a ‘bridge’[J]. Pathogens, 2021, 11(1):25.
|
[20] |
LU P, GUO L, WANG Z, et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew[J]. Nature communications, 2020, 11(1):680.
doi: 10.1038/s41467-020-14294-0
pmid: 32015344
|
[21] |
LI Y, WEI Z Z, SELA H, et al. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69[J]. Plant communications, 2024, 5(1):100646.
|
[22] |
WANG B, MENG T, XIAO B, et al. Fighting wheat powdery mildew: from genes to fields[J]. Theoretical and applied genetics, 2023, 136(9):196.
doi: 10.1007/s00122-023-04445-4
pmid: 37606731
|
[23] |
BAPELA T, SHIMELIS H, TEREFE T, et al. Breeding wheat for powdery mildew resistance: genetic resources and methodologies-a review[J]. Agronomy, 2023, 13(4):1173.
|
[24] |
高月, 郭秀林, 赵敏, 等. 分子标记辅助选择创制小麦抗白粉病基因聚合体[J]. 河北农业科学, 2022, 26(5):66-69.
|