Chinese Agricultural Science Bulletin ›› 2016, Vol. 32 ›› Issue (21): 51-57.doi: 10.11924/j.issn.1000-6850.casb16020050
Special Issue: 小麦
Previous Articles Next Articles
郭秀林
Received:
2016-02-17
Revised:
2016-03-22
Accepted:
2016-04-22
Online:
2016-07-15
Published:
2016-07-15
CLC Number:
郭秀林. Identification of Heat Resistance Traits and Related QTL in Wheat (Triticum aestivum L.)[J]. Chinese Agricultural Science Bulletin, 2016, 32(21): 51-57.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb16020050
[1] B. Barnabás K, J?ger A. The effect of drought and heat stress on reproductive processes in cereals [J]. Plant Cell Environ., 2008(31): 11–38. [2] Schlenker W, Roberts M J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change[J], Proc. Natl. Acad. Sci. U.S.A. 2009(106):15594–15598 [3] Semenov M A, Shewry P R. Modeling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe[J].Sci. Rep., 2011 (1):66 [4] 李永庚,于振文,张秀杰,等. 小麦产量与品质对灌浆不同阶段高温胁迫的响应[J].植物生态学报,2005,29(3):461-466 [5] Wiegand C L, Cuellar J A. Duration of grain filling and kernel weight of wheat as affected by temperature. Crop Science,1981,21:95-101 [6] 许为钢,胡琳,盖钧镒, 等. 小麦耐热性研究[J]. 华北农学报,1999,14(2) :1-5 [7] 闫长生,肖世和,张秀英,等. 冬小麦品种生育后期的耐热性评价.华北农学报,2003,18(3):15-17 [8] Pinto R S, Matthew P R, Mathews K L, et al. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical Applied Genetics, 2010, 121:1001–1021 [9] Yang J, Sears R G, Gill B S et al. Quantitative and molecular characterization of heat tolerance in hexaploid wheat[J]. Euphytica1, 2002, 26: 275–282 [10] 徐如强,孙其信,张树榛.小麦耐热性研究现状与展望[J].中国农业大学学报,1998,3(3):33-40 [11] Fokar M, Nguyen H T, Blum A. Heat tolerance in spring wheat.Ⅰ.Estimating-cellular thermotolerance and heritability [J]. Euphytica,1998,104:1-8 [12] Shanahan J F, Edwards I B,Quick J S, et al. Membrane thermostability and heat tolerance of spring wheat.Crop Sci,1990,30:247-251 [13] Sadalla M M,Quick J F, Shanahan J F. Heat tolerance in winter wheat.1. Hardening and genetic effects on membranes thermo-stability.Crop Science,1990,30:1243-1247 [14] Sadalla M M,Quick J F,Shanahan J F.Heat tolerance in winter wheat 2.Membranes thermostability and field performance.Crop Science,1990,30:1248-1251 [15] Blum A,Ebercon A.Cell membrane stability as a measure of drought and heat tolerance in wheat[J]. Crop Sci, 1981, 21:43-4 [16] 周人纲,樊志和,李晓芝,等. 高温锻炼对小麦细胞膜热稳定性的影响[J].1993,8(3):33-37 [17] Blum A, Klueva N, Nguyen H T. Wheat cellular thermo tolerance is related to yield under heat stress [J]. Euphytica, 2001, 117:117-123 [18] 陈希勇,孙其信,孙长征.春小麦耐热性表现及其评价.中国农业大学学报,2000,5(1):43-49 [19] Reynolds M P, Balota M, Delgado M I B, et al. Physiological and morphological traits associated with spring wheat yield under hot,irrigated conditions. Aust J Plant Physiol.,1994, 21:717-730 [20] 陈小霞,景晓东,梁小娜,尹钧,牛洪斌. R E C法鉴定黄淮麦区1 5个小麦品种的耐热性. 安徽农业科学,2009,37 (31):15189-15190 [21] 张嵩午,刘党校. 冷型小麦品质稳定性的研究[J]. 自然科学进展,2007,17(1) :29-30 [22] Babar M A, van Ginkel M, Klatt AR, et al. The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica,2006, 150:155–172 [23] Olivares-Villegas J J, Reynolds M P, McDonald G K. Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Funct Plant Biol,2007,34:189–203 [24] Al-Khatib K, Paulsen GM. Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Science,1990, 30:1127–1132 [25] Gautam A,SAgrawal D,SSaiPrasad SV,Set al. A quick method to screen high and low yielding wheat cultivars exposed to high temperature. Physiol Mol Biol Plants.S2014,20(4):533-537.S [26] 陈贻竹,李晓萍,夏丽,等.叶绿素荧光技术在植物环境胁迫研究中的利用[J].热带亚热带植物学报,1995,3(4):79-86 [27] Mofat J M, Sears G, Cox T S, et al. Wheat high temperature tolerance during reproductive growth. I. Evaluation by chlorophyll fluorescence[J]. Crop Science, 1990,30:881-885 [28] Bennett D, Reynolds M, Mullan D, et al. Detection of two major grain yield QTL in bread wheat(Triticum aestivumL.) under heat, drought and high yield potential environments[J].Theoretical and Applied Genetics, 2012 ,125(7):1473-85 [29] Mason R E, Mondal S, Beecher F W, et al. Genetic loci linking improved heat tolerance in wheat (Triticum aestivumL.) to lower leaf and spike temperatures under controlled conditions. Euphytica , 2011, 180:181–194 [30] Talukder S K, Babar M A, Vijayalakshmi K, et al. Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivumL.). BMC Genetics, 2014, 15:97 [31] Vijayalakshmi K, Fritz A K, Paulsen G M, et al. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding, 2010, 26:163–175 [32] Wang R X, Hai L, Zhang X Y, et al. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu8679. Theoretical and Applied Genetics, 2009, 118:313–325 [33] Paliwal R, R?der M S, Kumar U, et al. QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivumL.). Theoretical and Applied Genetics, 2012, 125:561–575 [34] Ciuca M, Petcu E. SSR markers associated with membrane stability in wheat (Triticum aestivum L.). Romanian Agricultural Research, 2009, 26:21–24 [35]李世平,昌小平,王成社,等.小麦灌浆期耐热性QTL定位分析.中国农业科学,2013,46(10):2119-2129 [36] 李世平,昌小平,王成社,等.小麦幼苗耐热性的QTL定位分析.西北植物学报,2012,32(8):1525-1533 [37] Groos C, Robert N, Bervas E, et al. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. 2003, Theoretical and Applied Genetics,106:1032–1040 [38] Kumar N, Kulwal P L, Balyan HS, et al. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Molecular Breed, 2007, 19:163-177 [39] Kolluru V, Allan K F,Gary M, et al.Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. 2010,Molecular Breeding, 26:163–175 [40] Wahid A, Gelani S, Ashraf M, et al. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 2007,61(3):199-223 [41] Fischer R A, Rees D, Sayre K D, et al.Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies[J]. Crop Science,1998, 38, 1467–1475 [42] Yano M,Sasaki F.Genetic and molecular dissection of quantitative traits in rice[J].1997, Plant Molecular Biology,35:145-153 |
[1] | CHENG Lu, WEN Yongli, CHENG Man. Effects of Enhanced UV-B Radiation on Greenhouse Gas Emissions in Terrestrial Ecosystem: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 80-88. |
[2] | LIAO Yumeng, LI Zuran, ZU Yanqun, LIU Caixin. Migration Pathways of Heavy Metals in Plants and Influencing Factors: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 63-69. |
[3] | WANG Jianbo, WANG Jifeng, FU Xiaoling, ZHONG Haixiu, LIU Yingnan, NI Hongwei. Effects of Different Nitrogen Supply on Photosynthetic Characteristics and Growth of Calamagrostis angustifolia Under Elevated CO2 Concentration [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 44-50. |
[4] | Chang Donghao, Ge Jingping. Detection and Degradation of Antibiotics in Ecological Environment: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 59-64. |
[5] | Li Guiqiong, Zhao Pengyu, Zhao Changling, Zhang Hongling, Zang Lingfei, Wen Guosong, Xu Shaozhong, Zhang Jinyu, Yang Bin, Yang Shaobing, Zhuang Tiancai. Specific Activities of Antioxidases and Malondialdehyde Contents of Valeriana jatamansi Jones Leaves Under Shading and Open Field Cultivation [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 111-116. |
[6] | Xiong Ying. Agro-Ecosystem Service Value of Sichuan Province: An Assessment [J]. Chinese Agricultural Science Bulletin, 2021, 37(2): 154-160. |
[7] | Zhang Qi, Zhang Qingxu, Pang Xiaomin, Wang Haibin, Ye Jianghua, Jia Xiaoli, He Haibin. Herbicide Ingredients in Fermentation Broth of One Strain of Fungi: Analysis [J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 106-112. |
[8] | Sun Zixin, Cai Baiyan. Arbuscular mycorrhizal Fungi: Physiological Mechanism of Promoting Plant to Absorb Mineral Elements and Its Effect on Soil Sulfur [J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 49-54. |
[9] | Liu Mei, Li Zuran, Zu Yanqun. Transport Protein CAXs and HMAs Related to Cadmium Absorbing and Transferring of Plant: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 82-90. |
[10] | Lu Chengcheng, Cai Baiyan. AM Fungi Improving the Mechanism of Phosphorus Uptake and Transport in Plants: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(26): 50-54. |
[11] | Jiang Hanbing, Zhang Chuanwei, Zhang Yucui, Shen Yanjun. Crop Stomatal Conductance Model: Research Progress and Application Status [J]. Chinese Agricultural Science Bulletin, 2020, 36(12): 1-9. |
[12] | Wang Shouhong, Wang Guiliang, Kou Xiangming, Zhang Jiahong, Zhu Lingyu, Xu Rong, Han Guangming, Wu Leiming, Tang Hejun, Bi Jianhua. Biogas Residue Substituting Chemical Fertilizer Nitrogen as Basal Fertilizer: Effect on Grape Yield and Quality [J]. Chinese Agricultural Science Bulletin, 2020, 36(2): 74-79. |
[13] | . Clipping Times: Effects on Yield and Quality of Ryegrass Planted Under Trees [J]. Chinese Agricultural Science Bulletin, 2017, 33(36): 93-98. |
[14] | . Brief Analysis of Present Situation and Countermeasures of Agricultural Non-point Source Pollution Control in China [J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 80-84. |
[15] | Wang Guiliang,Zhu Lingyu,Zhang Jiahong,Han Guangming,Wang Shouhong,Kou Xiangming,Bi Jianhua,Xu Rong,Tang Hejun and Yang Jianchun. Effects of Integrated Zizania latifolia-duck Farming on Yield and Quality of Zizania latifolia [J]. Chinese Agricultural Science Bulletin, 2017, 33(21): 45-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||