Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (20): 83-91.doi: 10.11924/j.issn.1000-6850.casb20190500109
Special Issue: 土壤重金属污染
Previous Articles Next Articles
Zhao Shouping, Ye Xuezhu, Zhang Qi, Xiao Wendan
Received:
2019-05-08
Revised:
2019-10-22
Online:
2020-07-15
Published:
2020-07-20
CLC Number:
Zhao Shouping, Ye Xuezhu, Zhang Qi, Xiao Wendan. Soil Contaminated by Heavy Metals: Comparison of Bioremediation Methods[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 83-91.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20190500109
植物名称 | 富集重金属 | 地上部富集浓度/(mg/kg) | 超积累植物阈值/(mg/kg) | 富集值/阈值 | 参考文献 |
---|---|---|---|---|---|
豆科植物光叶桑 Prosopis laevigata | Cd | 8176 | 100 | 81.8 | Buendía-González et al, 2010[ |
天蓝遏蓝菜 Thlaspi caerulescens | 5000 | 30.0 | Koptsik, 2014[ | ||
柔毛堇菜 Viola principis | 1201 | 12.1 | Wan et al, 2016[ | ||
叶下珠属 Phyllanthus serpentines | Ni | 38100 | 1000 | 38.1 | Chaney et al, 2010[ |
天蓝遏蓝菜 Thlaspi caerulescens | 16200 | 16.2 | Koptsik, 2014[ | ||
水生蕨类 Salvinia minima | 16600 | 16.6 | Fuentes et al, 2014[ | ||
芥菜型油菜 Brassica juncea | Pb | 10300 | 1000 | 10.3 | Koptsik, 2014[ |
黑芥菜 Brassica nigra | 9400 | 9.4 | Koptsik, 2014[ | ||
向日葵 Helianthus annuus | 5600 | 5.6 | Koptsik, 2014[ | ||
尖叶柔毛堇菜 Viola principis | 2350 | 2.4 | Wan et al., 2016[ | ||
蕨类植物 Pteris vittate | As | 6017 | 1000 | 6.0 | Han, et al, 2016[ |
菊科的雀苣属 Corrigiola telephiifolia | 2110 | 2.1 | Garcia-Salgado et al, 2012[ |
植物名称 | 富集重金属 | 地上部富集浓度/(mg/kg) | 超积累植物阈值/(mg/kg) | 富集值/阈值 | 参考文献 |
---|---|---|---|---|---|
豆科植物光叶桑 Prosopis laevigata | Cd | 8176 | 100 | 81.8 | Buendía-González et al, 2010[ |
天蓝遏蓝菜 Thlaspi caerulescens | 5000 | 30.0 | Koptsik, 2014[ | ||
柔毛堇菜 Viola principis | 1201 | 12.1 | Wan et al, 2016[ | ||
叶下珠属 Phyllanthus serpentines | Ni | 38100 | 1000 | 38.1 | Chaney et al, 2010[ |
天蓝遏蓝菜 Thlaspi caerulescens | 16200 | 16.2 | Koptsik, 2014[ | ||
水生蕨类 Salvinia minima | 16600 | 16.6 | Fuentes et al, 2014[ | ||
芥菜型油菜 Brassica juncea | Pb | 10300 | 1000 | 10.3 | Koptsik, 2014[ |
黑芥菜 Brassica nigra | 9400 | 9.4 | Koptsik, 2014[ | ||
向日葵 Helianthus annuus | 5600 | 5.6 | Koptsik, 2014[ | ||
尖叶柔毛堇菜 Viola principis | 2350 | 2.4 | Wan et al., 2016[ | ||
蕨类植物 Pteris vittate | As | 6017 | 1000 | 6.0 | Han, et al, 2016[ |
菊科的雀苣属 Corrigiola telephiifolia | 2110 | 2.1 | Garcia-Salgado et al, 2012[ |
修复技术 | 修复过程 | 优势 | 局限性 | 适用性 | 公众接受度 | 复合污染点位 | 修复所需时间 |
---|---|---|---|---|---|---|---|
植物挥发 | 植物从土壤吸收重金属并以水蒸气的形式释放到大气中 | 经济成本低, 破坏性小 | 仅限挥发性的重金属,且会产生环境问题,重金属挥发后无法控制 | 中小规模地块,长期修复 | 低、中 | 不适合 | 长期 |
植物固定 | 植物根系吸收隔离,降低土壤金属生物有效性和移动性 | 经济成本低, 破坏性小 | 效果是暂时的,且有效性随土壤、植物和重金属类型变化 | 中小规模地块,短期修复 | 中 | 不太适合 | 长期 |
植物提取 | 超级累植物从土壤中吸收、转移和浓缩重金属到地上可收获部分 | 经济成本高、环境友好,破坏性小 | 有效性取决于植物生长条件及其对重金属耐性,且重金属超级累植物一般比较少 | 大规模地块, 长期修复 | 高 | 不太适合,除了某些特殊植物 | 长期 |
螯合辅助植物提取 | 使用有机、无机螯合剂增强植物提取的能力 | 修复周期短,增加重金属的吸收和转运 | 费用高,可能带来破坏性,仅对低中度污染土壤有效,可能有地下水污染风险 | 中小规模地块,短期修复,低中度污染水平 | 非常高 | 不太适合,但比单独植物提取更有效 | 长期,但比单独植物提取需时间短 |
微生物辅助植物提取 | 利用微生物增强植物提取的能力 | 经济成本低,修复时间短,促进植物生长和重金属的吸收和转运 | 效果依赖微生物、土壤、植物和重金属类型 | 大规模地块, 长期修复 | 非常高 | 不太适合,但比单独植物提取更有效 | 长期,但比单独植物提取需时间短 |
修复技术 | 修复过程 | 优势 | 局限性 | 适用性 | 公众接受度 | 复合污染点位 | 修复所需时间 |
---|---|---|---|---|---|---|---|
植物挥发 | 植物从土壤吸收重金属并以水蒸气的形式释放到大气中 | 经济成本低, 破坏性小 | 仅限挥发性的重金属,且会产生环境问题,重金属挥发后无法控制 | 中小规模地块,长期修复 | 低、中 | 不适合 | 长期 |
植物固定 | 植物根系吸收隔离,降低土壤金属生物有效性和移动性 | 经济成本低, 破坏性小 | 效果是暂时的,且有效性随土壤、植物和重金属类型变化 | 中小规模地块,短期修复 | 中 | 不太适合 | 长期 |
植物提取 | 超级累植物从土壤中吸收、转移和浓缩重金属到地上可收获部分 | 经济成本高、环境友好,破坏性小 | 有效性取决于植物生长条件及其对重金属耐性,且重金属超级累植物一般比较少 | 大规模地块, 长期修复 | 高 | 不太适合,除了某些特殊植物 | 长期 |
螯合辅助植物提取 | 使用有机、无机螯合剂增强植物提取的能力 | 修复周期短,增加重金属的吸收和转运 | 费用高,可能带来破坏性,仅对低中度污染土壤有效,可能有地下水污染风险 | 中小规模地块,短期修复,低中度污染水平 | 非常高 | 不太适合,但比单独植物提取更有效 | 长期,但比单独植物提取需时间短 |
微生物辅助植物提取 | 利用微生物增强植物提取的能力 | 经济成本低,修复时间短,促进植物生长和重金属的吸收和转运 | 效果依赖微生物、土壤、植物和重金属类型 | 大规模地块, 长期修复 | 非常高 | 不太适合,但比单独植物提取更有效 | 长期,但比单独植物提取需时间短 |
[1] | 环境保护部. 全国土壤污染状况调查公报[EB/OL]. Http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm. |
[2] | Xiong T, Austruy A, Pierart A, Shahid M. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture[J]. Journal of Environmental Science, 2016,46(8):16-27. |
[3] | Minnikova T V, Denisova T V, Mandzhieva S S, et al. Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas[J]. Journal of Geochemical Exploration, 2017,174:70-78. |
[4] | Pattnaik B K, Equeenuddin S M. Potentially toxic metal contamination and enzyme activities in soil around chromite mines at Sukinda ultramafic complex, India[J]. Journal of Geochemical Exploration, 2016,168:127-136. |
[5] | Bañuelos G S, Mayland H F. Absorption and distribution of selenium in animals consuming canola grown for selenium phytoremediation[J]. Ecotoxicology and Environmental Safefy, 2000,46:322-328. |
[6] |
Sakakibara M, Ohmori Y, Ha N T H, et al. Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis[J]. Clean-Soil Air Water, 2011,39:735-741.
doi: 10.1002/clen.v39.8 URL |
[7] |
Meagher R B. Phytoremediation of toxic elemental and organic pollutants[J]. Current Opinion in Plant Biology, 2000,3:153-162.
URL pmid: 10712958 |
[8] |
Sylvain B, Mikael M H, Florie M, et al. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols[J]. Catena, 2016,136:44-52.
doi: 10.1016/j.catena.2015.07.008 URL |
[9] |
Galende M A, Becerril J M, Barrutia O, et al. Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb-Zn contaminated mine soil[J]. Journal of Geochemical Exploration, 2014,145:181-189.
doi: 10.1016/j.gexplo.2014.06.006 URL |
[10] |
Abbas G, Saqib M, Akhtar J, et al. Relationship between rhizosphere acidification and phytoremediation in two acacia species[J]. Journal of Soils and Sediments, 2016,16:1392-1399.
doi: 10.1007/s11368-014-1051-9 URL |
[11] |
Valentín-Vargas A, Root R A, Neilson J W, et al. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generatingmine tailings: amesocosm experiment[J]. Science of The Total Environment, 2014,500:314-324.
doi: 10.1016/j.scitotenv.2014.08.107 URL pmid: 25237788 |
[12] |
Parra A, Zornoza R, Conesa E, et al. Evaluation of the suitability of three Mediterranean shrub species for phytostabilization of pyritic mine soils[J]. Catena, 2016,136:59-65.
doi: 10.1016/j.catena.2015.07.018 URL |
[13] |
Lee S H, Ji W, Lee W S, et al. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings[J]. Journal of Environmental Management, 2014,139:15-21.
doi: 10.1016/j.jenvman.2014.02.019 URL pmid: 24681360 |
[14] | Blaylock M J, Huang J W. Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment[M]. New York:Wiley press, 2000: 53-70. |
[15] |
Mahar A, Wang P, Ali A, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review[J]. Ecotoxicology and Environmental Safety, 2016,126:111-121.
doi: 10.1016/j.ecoenv.2015.12.023 URL pmid: 26741880 |
[16] |
Sheoran V, Sheoran A S, Poonia P. Factors affecting phytoextraction: a review[J]. Pedosphere, 2016,26:148-166.
doi: 10.1016/S1002-0160(15)60032-7 URL |
[17] |
Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants[J]. New Phytologist, 2009,181:759-776.
URL pmid: 19192189 |
[18] |
Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, et al. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant[J]. Bioresource Technology, 2010,101:5862-5867.
doi: 10.1016/j.biortech.2010.03.027 URL pmid: 20347590 |
[19] |
Ali H, Khan E, Sajad M A. Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013,91:869-881.
URL pmid: 23466085 |
[20] |
Vogel-Mikuš K, Pongrac P, Kump P, et al. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake[J]. Environmental Pollution, 2006,139:362-371.
doi: 10.1016/j.envpol.2005.05.005 URL pmid: 15998561 |
[21] |
Kotrba P, Najmanova J, Macek T, et al. Genetically modified plants in phytoremediation of heavymetal andmetalloid soil and sediment pollution[J]. Biotechnology Advances, 2009,27:799-810.
doi: 10.1016/j.biotechadv.2009.06.003 URL pmid: 19567265 |
[22] |
Xiong D, Fang T, Yu L, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage[J]. Science of The Total Environment, 2011,409:1444-1452.
doi: 10.1016/j.scitotenv.2011.01.015 URL pmid: 21296382 |
[23] |
杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002,8(1):8-15.
doi: 10.11674/zwyf.2002.0102 URL |
[24] |
Koptsik G N. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review[J]. Eurasian Soil Science, 2014,47:923-939.
doi: 10.1134/S1064229314090075 URL |
[25] |
Wan X, Lei M, Yang J. Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province, China[J]. Catena, 2016,148:67-76.
doi: 10.1016/j.catena.2016.02.005 URL |
[26] | Chaney R L, Broadhurst C L, Centofanti T. Trace Elements in Soils[M]. New York: Wiley press, 2010:311-352. |
[27] |
Fuentes I I, Espadas-Gil F, Talavera-May C, et al. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes[J]. Aquatic Toxicology, 2014,155:142-150.
URL pmid: 25019564 |
[28] |
Han W, Fu F, Cheng Z, et al. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater[J]. Journal of Hazardous Materials, 2016,302:437-446.
doi: 10.1016/j.jhazmat.2015.09.041 URL pmid: 26521089 |
[29] |
Garcia-Salgado S, Raber G, Raml R, et al. Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae[J]. Environmental Chemistry, 2012,9:63-66.
doi: 10.1071/EN11164 URL |
[30] |
Shahid M, Dumat C, Khalid S, et al. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system[J]. Reviews of Environmental Contamination & Toxicology, 2016,241:1-65.
doi: 10.1007/398_2016_10 URL pmid: 27464848 |
[31] |
Bressler J P, Olivi L, Cheong J H, et al. Divalent metal transporter 1 in lead and cadmium transport[J]. Annals of the New York Academy of Sciences, 2004,1012:142-152.
doi: 10.1196/annals.1306.011 URL pmid: 15105261 |
[32] |
Adrees M, Ali S, Rizwan M, et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review[J]. Ecotoxicology and Environmental Safety, 2015,119:186-197.
doi: 10.1016/j.ecoenv.2015.05.011 URL pmid: 26004359 |
[33] |
Axel N, Alberto G, Melissa G, et al. Copper excess detoxification is mediated by a coordinated and complementary induction of glutathione, phytochelatins and metallothioneins in the green seaweed Ulva compressa[J]. Plant Physiology and Biochemistry, 2019,135:423-431.
URL pmid: 30501930 |
[34] | Clark D P, Pazdernik N J. Biotechnology: Applying the Genetic Revolution[M]. Elsevier: Academic Press, 2015: 63-95. |
[35] |
Barrameda-Medina Y, Montesinos-Pereira D, Romero L, et al. Comparative study of the toxic effect of Zn in Lactuca sativa and Brassica oleracea plants: I. Growth, distribution, and accumulation of Zn, and metabolism of carboxylates[J]. Environmental and Experimental Botany, 2014,107:98-104.
doi: 10.1016/j.envexpbot.2014.05.012 URL |
[36] |
Khoudi H, Maatar Y, Brini F, et al. Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum[J]. Environmental Science and Pollution Research, 2013,20:270-280.
doi: 10.1007/s11356-012-1143-2 URL pmid: 22956112 |
[37] |
Zhang Y, Liu J, Zhou Y, et al. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene)with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1[J]. Journal of Hazardous Materials, 2013,260:1100-1107.
doi: 10.1016/j.jhazmat.2013.06.065 URL |
[38] |
Guo X, Wei Z, Wu Q, et al. Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: field experiments[J]. Chemosphere, 2016,147:412-419.
URL pmid: 26774307 |
[39] |
Kumar N, Bauddh K, Kumar S, et al. Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential[J]. Ecological Engineering, 2013,61:491-495.
doi: 10.1016/j.ecoleng.2013.10.004 URL |
[40] |
Usman A R A, Mohamed H M. Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower[J]. Chemosphere, 2009,76:893-899.
doi: 10.1016/j.chemosphere.2009.05.025 URL |
[41] | Saifullah S M, Zia-Ur-Rehman M, Sabir M, et al. Soil Remediation and Plants[M]. Elsevier: Academic Press, 2015: 397-414. |
[42] |
Kulikowska D, Gusiatin Z M, Bulkowska K, et al. Feasibility of using humic substances fromcompost to remove heavymetals (Cd, Cu, Ni, Pb, Zn) fromcontaminated soil aged for different periods of time[J]. Journal of Hazardous Materials, 2015,300:882-891.
doi: 10.1016/j.jhazmat.2015.08.022 URL pmid: 26462121 |
[43] |
Shahid M, Xiong T, Masood N, et al. Influence of plant species and phosphorus amendments on metal speciation and bioavailability in a smelter impacted soil: a case study of food-chain contamination[J]. Journal of Soils and Sediments, 2014c,14:655-665.
doi: 10.1007/s11368-013-0745-8 URL |
[44] | Cay S, Uyanik A, Engin M S. EDTA supported phytoextraction of Cd fromcontaminated soil by four different ornamental plant species. Soil Sediment Contam[J]. Journal of Soil Contamination, 2016,25:346-355. |
[45] |
Shahid M, Pinelli E, Dumat C. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands[J]. Journal of Hazardous Materials, 2012a,219:1-12.
doi: 10.1016/j.jhazmat.2012.01.060 URL pmid: 22502897 |
[46] |
Abbas G, Saqib M, Akhtar J, et al. Effect of salinity on rhizosphere acidification and antioxidant activity of two acacia species[J]. Canadian Journal of Forest Research, 2015,45:124-129.
doi: 10.1139/cjfr-2014-0354 URL |
[47] |
Rajkumar M, Sandhya S, Prasad M N V, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation[J]. Biotechnology Advances, 2012,30:1562-1574.
doi: 10.1016/j.biotechadv.2012.04.011 URL |
[48] |
Ma Y, Oliveira R S, Nai F, et al. The hyperaccumulator sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil[J]. Journal of Environmental Management, 2015,156:62-69.
doi: 10.1016/j.jenvman.2015.03.024 URL pmid: 25796039 |
[49] |
Yang Z, Zhang Z, Chai L, et al. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90[J]. Journal of Hazardous Materials, 2016,301:145-152.
doi: 10.1016/j.jhazmat.2015.08.047 URL pmid: 26348147 |
[50] |
Zhang M, Senoura T, Yang X, et al. Functional analysis of metal tolerance proteins isolated from Zn/Cd hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance[J]. Febs Letters, 2011,585(16):2604-2609.
doi: 10.1016/j.febslet.2011.07.013 URL |
[51] |
Grobelak A, Napora A, Kacprzak M. Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth[J]. Ecological Engineering, 2015,84:22-28.
doi: 10.1016/j.ecoleng.2015.07.019 URL |
[52] | Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects[J]. Arabian Journal of Chemistry, 2014,158:11-20. |
[53] |
Ullah A, Heng S, Munis M F H, et al. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review[J]. Environmental and Experimental Botany, 2015,117:28-40.
doi: 10.1016/j.envexpbot.2015.05.001 URL |
[54] |
Braud A, Jézéquel K, Bazot S, et al. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria[J]. Chemosphere, 2009,74:280-286.
doi: 10.1016/j.chemosphere.2008.09.013 URL |
[55] |
Sheng X F, Xia J J, Jiang C Y, et al. Characterization of heavymetal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J]. Environmental Pollution, 2008,156(3):1164-1170.
doi: 10.1016/j.envpol.2008.04.007 URL pmid: 18490091 |
[56] | 黄文. 产表面活性剂根际菌协同龙葵修复镉污染土壤[J]. 环境科学与技术, 2011,340(10):48-52. |
[57] |
Shahid M, Arshad M, Kaemmerer M, et al. Long-termfieldmetal extraction by pelargonium: phytoextraction efficiency in relation to plant maturity[J]. International Journal of Phytoremediation, 2012b,14:493-505.
doi: 10.1080/15226514.2011.604689 URL pmid: 22567727 |
[58] | 刘维涛. 重金属富集植物生物质的处置技术研究进展[J]. 农业环境科学学报, 2014,33(1):15-27. |
[59] |
黄化刚, 李廷强, 朱治强, 等. 可溶性磷肥对重金属复合污染土壤东南景天提取锌/镉及其养分积累的影响[J]. 植物营养与肥料学报, 2012,18(2):382-389.
doi: 10.11674/zwyf.2012.11294 URL |
[60] | 智杨, 孙挺, 周启星, 等. 铅低积累大豆的筛选及铅对其豆中矿物营养元素的影响[J]. 环境科学学报, 2015,35(6):1939-1945. |
[61] | 苗欣宇, 周启星. 污染土壤植物修复效率影响因素研究进展[J]. 生态学杂志, 2016,34(3):870-877. |
[1] | LI Xiaoyu. Cultivation and Product Analysis of Pleurotus eryngii on Phragmites australis Substrates [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 51-55. |
[2] | WU Song, ZHOU Tian, YANG Libin, JIANG Yunbing, PAN Hong, LIU Yongzhi, DU Jun. VOSviewer-Based Visual Analysis on Research Status of Phyllosphere Microorganisms [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 142-150. |
[3] | HONG Ciqing, GUI Fangze, CHEN Fangrong, FANG Yun, YOU Yuxin, GUAN Xiong, PAN Xiaohong. The Adsorption of Heavy Metal Nickel by Biochar Prepared from Tea Residue [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 109-114. |
[4] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[5] | YIN Tingting, LI Zhihui, SU Jiahe, WU Shidi, XU Hongyan, HE Shuai, LIU Pei, LI Xiangqian. Nano-selenium Prepared by Biological Method: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 33-41. |
[6] | QIN Naiqun, MA Qiaoyun, GAO Jingwei, YANG Pu, CAI Jinlan, HAO Yingchun, LI Yanmei, JI Hongce, LIAO Xiangzheng. Effects of Biogas Residue Application on Nutrient and Heavy Metal Content in Soil and Yield of Crops Under Peanut-wheat Rotation [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 58-63. |
[7] | WANG Lina, YANG Ying, Du Su. Effects of Biochar Application on Saline-alkali Soil: Research Status [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 81-87. |
[8] | CAO Qiumei, WANG Luyi, LI Xiaoman, LI Junda, LIU Mengtian, ZHENG Yao, WANG Lihua. Effects of Effective Microorganisms on Growth Performance, Nutrient Digestibility and Fecal Ammonia Emission of BALB/C Mice [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 124-128. |
[9] | CHEN Hui, ZHOU Xiaoyue, TAN Cheng, ZHANG Yongchun, WANG Jidong, MA Hongbo. Effects of Milk Vetch Returning to Field on the Content of Soil Nutrient and Heavy Metal [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 80-85. |
[10] | ZHAO Yue, ZHANG Xiaoyan, CAO Kun, HAN Chengwei, JIANG Ying, BIAN Jing, WANG Xiaonan, SUN Yufeng. Physiology and Molecular Mechanism of Stress Resistance in Hemp: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 102-106. |
[11] | BAO Guangling, TAO Ronghao, YANG Qingbo, HU Hanxiu, LI Ding, MA Youhua. Microbial Remediation of Heavy Metal Pollution in Farmland Soil: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 69-74. |
[12] | SUN Yangcun, YIN Ziliang, GE Jingping. Accumulation of Heavy Metal Pollutants in Soil: Sources and Treatment Methods [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 75-79. |
[13] | ZHANG Xiaoqing, LI Ya, WEI Shan, REN Dajun, ZHANG Shuqin. Knowledge Map of Soil Heavy Metal Pollution Control Based on CiteSpace [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 133-143. |
[14] | XU Lingqing, LI Jiajia, CHANG Xiao, ZHANG Yunlong, LIU Dali. The Mechanism of Soil Nitrogen Mineralization: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 97-101. |
[15] | WANG Lixia, YIN Xiaomin, LIU Yongxia, LIAN Zihao, WANG Bizun, HE Yingdui. Change Characteristics of Microbial Community in the Rhizosphere of Papaya Under Papaya-Leek Intercropping [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 66-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||