
Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (11): 114-121.doi: 10.11924/j.issn.1000-6850.casb2020-0347
Special Issue: 资源与环境
Previous Articles Next Articles
					
													Wang Qiujun1( ), Xu Liping2, Guo Dejie1, Wang Guangfei1, Liang Yonghong3, Ma Yan1,4(
), Xu Liping2, Guo Dejie1, Wang Guangfei1, Liang Yonghong3, Ma Yan1,4( )
)
												  
						
						
						
					
				
Received:2020-08-07
															
							
																	Revised:2020-10-21
															
							
															
							
																	Online:2021-04-15
															
							
																	Published:2021-04-13
															
						Contact:
								Ma Yan   
																	E-mail:wangqiujun461@163.com;myjaas@sina.com
																					CLC Number:
Wang Qiujun, Xu Liping, Guo Dejie, Wang Guangfei, Liang Yonghong, Ma Yan. Effect of Continuous Application of Biochar on Soil Phosphorus Forms and Adsorption and Release Characteristics in Greenhouse[J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 114-121.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0347
| 处理 | 有效磷/(mg/kg) | 全磷/(g/kg) | 有机碳/(g/kg) | pH | 电导率/(μS/cm) | 
|---|---|---|---|---|---|
| CK | 118.7±7.2b | 1.0±0.0b | 11.8±0.3c | 7.4±0.0a | 66.0±2.0b | 
| OF | 320.6±43.5a | 2.0±0.2a | 18.3±0.5b | 6.8±0.1c | 273.5±50.5a | 
| BOF | 336.6±35.6a | 1.9±0.4a | 28.5±0.1a | 7.2±0.0b | 295.7±29.1a | 
| 处理 | 有效磷/(mg/kg) | 全磷/(g/kg) | 有机碳/(g/kg) | pH | 电导率/(μS/cm) | 
|---|---|---|---|---|---|
| CK | 118.7±7.2b | 1.0±0.0b | 11.8±0.3c | 7.4±0.0a | 66.0±2.0b | 
| OF | 320.6±43.5a | 2.0±0.2a | 18.3±0.5b | 6.8±0.1c | 273.5±50.5a | 
| BOF | 336.6±35.6a | 1.9±0.4a | 28.5±0.1a | 7.2±0.0b | 295.7±29.1a | 
| 处理 | Langmuir | Freundlich | |||||
|---|---|---|---|---|---|---|---|
| Qm/(g/kg) | Kl/(L/mg) | R2 | Kf /(L/mg) | 1/n | R2 | ||
| CK | 10.0 | 0.020 | 0.920 | 234.3 | 0.81 | 0.989 | |
| OF | 1.0 | 0.029 | 0.322 | 4.9 | 1.92 | 0.849 | |
| BOF | 10.0 | 0.015 | 0.157 | 277.2 | 0.67 | 0.706 | |
| 处理 | Langmuir | Freundlich | |||||
|---|---|---|---|---|---|---|---|
| Qm/(g/kg) | Kl/(L/mg) | R2 | Kf /(L/mg) | 1/n | R2 | ||
| CK | 10.0 | 0.020 | 0.920 | 234.3 | 0.81 | 0.989 | |
| OF | 1.0 | 0.029 | 0.322 | 4.9 | 1.92 | 0.849 | |
| BOF | 10.0 | 0.015 | 0.157 | 277.2 | 0.67 | 0.706 | |
| 处理 | 拟一级动力学模型 | 拟二级动力学模型 | |||||
|---|---|---|---|---|---|---|---|
| Qmax /(mg/kg) | k1/h-1 | R2 | Qmax /(mg/kg) | k2/[kg/(mg·h)] | R2 | ||
| CK | 2.8 | 0.106 | 0.798 | 2.5 | 0.439 | 0.871 | |
| OF | 79.7 | 0.243 | 0.918 | 96.2 | 0.003 | 0.917 | |
| BOF | 33.1 | 0.108 | 0.905 | 38.3 | 0.004 | 0.879 | |
| 处理 | 拟一级动力学模型 | 拟二级动力学模型 | |||||
|---|---|---|---|---|---|---|---|
| Qmax /(mg/kg) | k1/h-1 | R2 | Qmax /(mg/kg) | k2/[kg/(mg·h)] | R2 | ||
| CK | 2.8 | 0.106 | 0.798 | 2.5 | 0.439 | 0.871 | |
| OF | 79.7 | 0.243 | 0.918 | 96.2 | 0.003 | 0.917 | |
| BOF | 33.1 | 0.108 | 0.905 | 38.3 | 0.004 | 0.879 | |
| [1] | 肖辉, 潘洁, 程文娟, 等. 不同有机肥对设施土壤有效磷累积与淋溶的影响[J]. 土壤通报, 2012,43(5):1195-1200. | 
| [2] | 张田, 许浩, 茹淑华, 等. 不同有机肥中磷在土壤剖面中累积迁移特征与有效性差异[J]. 环境科学, 2017(12):1-15. | 
| [3] | Fei Y H, Zhao D, Cao Y D, et al. Phosphorous Retention and Release by Sludge-Derived Hydrochar for Potential Use as a Soil Amendment[J]. Journal of Environmental Quality, 2019,48(2):502-509. doi: 10.2134/jeq2018.09.0328 URL pmid: 30951129 | 
| [4] | Chintala R, Schumacher T E, Mcdonald L M, et al. Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures[J]. CLEAN - Soil Air Water, 2014,42(5):626-634. | 
| [5] | Cui H J, Wang M, Fu M L, et al. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar[J]. Journal of Soils & Sediments, 2011,11(7):1135-1141. | 
| [6] | Morales M M, Comerford N, Guerrini I A, et al. Sorption and desorption of phosphate on biochar and biochar-soil mixtures[J]. Soil Use and Management, 2013,29(3):306-314. | 
| [7] | Yao Y, Gao B, Zhang M, et al. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil[J]. Chemosphere, 2012,89(11):1467-1471. URL pmid: 22763330 | 
| [8] | Shepherd J G, Joseph S, Sohi S P, et al. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties[J]. Chemosphere, 2017,179:57-74. doi: 10.1016/j.chemosphere.2017.02.123 URL pmid: 28364649 | 
| [9] | Schneider F, Haderlein S B. Potential effects of biochar on the availability of phosphorus-mechanistic insights[J]. Geoderma, 2016,277:83-90. | 
| [10] | Koch M, Kruse J, Eichler-Löbermann B, et al. Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: Evidence from sequential fractionation, P K-edge XANES, and 31P NMR spectroscopy[J]. Geoderma, 2018,316:115-126. | 
| [11] | Xu G, Wei L L, Sun J N, et al. What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism?[J]. Ecological Engineering, 2013,52:119-124. | 
| [12] | Jones D L, Rousk J, Edwards-Jones G, et al. Biochar-mediated changes in soil quality and plant growth in a three year field trial[J]. Soil Biology and Biochemistry, 2012,45:113-124. | 
| [13] | Willett I R, Cunningham R B. Influence of Sorbed Phosphate on the Stability of Ferric Hydrous Oxide under Controlled pH and Eh Conditions[J]. Soil Research, 1983,21(3):301-308. | 
| [14] | 武玉. 生物炭对土壤中磷的形态转化以及有效性的影响[D]. 烟台:中国科学院烟台海岸带研究所, 2015. | 
| [15] | Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil - concepts and mechanisms[J]. Plant & Soil, 2007,300(1-2):9-20. | 
| [16] | 李仁英, 吴洪生, 黄利东, 等. 不同来源生物炭对土壤磷吸附解吸的影响[J]. 土壤通报, 2017(6):1398-1403. | 
| [17] | Novak J M, Busscher W J, Laird D L, et al. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil[J]. Soil Science, 2009,174(2):105-112. | 
| [18] | Yao Y, Gao B, Chen J, et al. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential[J]. Bioresource Technology, 2013,138:8-13. doi: 10.1016/j.biortech.2013.03.057 URL pmid: 23612156 | 
| [19] | Ying Y, Gao B, Inyang M, et al. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential[J]. Bioresour Technol, 2011,102(10):6273-6278. URL pmid: 21450461 | 
| [20] | Vikrant K, Kim K H, Yong S O, et al. Engineered/designer biochar for the removal of phosphate in water and wastewater[J]. Science of the Total Environment, 2017, 616-617:1242-1260. doi: 10.1016/j.scitotenv.2017.10.193 URL | 
| [21] | Takaya C A, Fletcher L A, Singh S, et al. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes[J]. Chemosphere, 2016,145:518-527. doi: 10.1016/j.chemosphere.2015.11.052 URL pmid: 26702555 | 
| [22] | Guo Y, Rockstraw D A. Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation[J]. Bioresource Technology, 2007,98(8):1513-1521. doi: 10.1016/j.biortech.2006.06.027 URL pmid: 16973352 | 
| [23] | 才吉卓玛. 生物炭对不同类型土壤中磷有效性的影响研究[D]. 北京:中国农业科学院, 2013: 3-6. | 
| [24] | 胡华英, 曹升, 杨靖宇, 等. 生物炭对杉木人工林土壤磷素吸附解吸特性的影响[J]. 西北林学院学报, 2019,34(4):8-15. | 
| [25] | Xu G, Sun J N, Shao H B, et al. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity[J]. Ecological Engineering, 2014,62:54-60. doi: 10.1016/j.ecoleng.2013.10.027 URL | 
| [26] | Wang L Q, Liang T. Effects of exogenous rare earth elements on phosphorus adsorption and desorption in different types of soils[J]. Chemosphere, 2014,103:148-155. doi: 10.1016/j.chemosphere.2013.11.050 URL pmid: 24342358 | 
| [1] | HONG Ciqing, GUI Fangze, CHEN Fangrong, FANG Yun, YOU Yuxin, GUAN Xiong, PAN Xiaohong. The Adsorption of Heavy Metal Nickel by Biochar Prepared from Tea Residue [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 109-114. | 
| [2] | WANG Lina, YANG Ying, Du Su. Effects of Biochar Application on Saline-alkali Soil: Research Status [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 81-87. | 
| [3] | ZHANG Yong, XU Zhi, GAO Lifang, DENG Yaqin, WANG Ruixue, WANG Yuyun. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Lettuce Yield in Newly Reclaimed Red Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 79-85. | 
| [4] | REN Xvrui, WANG Yihui, YANG Hongyu, YUAN Liang, ZHAO Yue. Resource Utilization System of Agricultural Organic Waste After Centralized Recovery and Treatment: A Case Study of Xingxian Village in Gannan County [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 74-79. | 
| [5] | LI Wei, XU Zhonghua, ZHENG Mingjie. Effects of Leaching and Organic Fertilizer on Improvement of Saline-Alkali Soil and Growth of Sapindus mukorossi [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 32-37. | 
| [6] | SONG Haiyun, XIAO Haiyan, ZHANG Tao, HE Peng, ZHENG Shufang, XU Peng, WEI Yuanrong, WANG Wenlin. Producing Organic Fertilizer by Fermentation of Macadamia Peel [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 38-44. | 
| [7] | XU Danyang, LI Hongying, SUN Yixiang, WU Gang, WANG Jiabao, YUAN Manman, WANG Peixuan, ZHANG Xiangming, SHU Xiaohai. Combined Application of Different Proportions of Organic and Inorganic Fertilizers: Effects on Rice Yield and Nitrogen Use Efficiency [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 1-5. | 
| [8] | CHAO Ying, FU Gangfeng, YAN Xianghui, HANG Zhongqiao, YANG Quangang, WANG Hui, PAN Hong, LOU Yanhong, ZHUGE Yuping. Effects of Organic Fertilizer on Crop Quality, Soil Fertility and Environment: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 103-107. | 
| [9] | ZENG Quan, SHI Guoying, SU Lin, YE Xuelian, HU Chunjin. Organic Fertilizer Production with Fermentation and Composting of Chicken Manure Promoted by Flammulina Chaff [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 44-50. | 
| [10] | WANG Haihou, CHENG Yueqin, JIN Meijuan, LIU Zekai, SHI Linlin, LU Changying. Effects of Rice Husk Biochar on Nitrogen Conversion and Fixation in Sheep Manure Composting [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 51-59. | 
| [11] | ZHANG Nan, PAN Shiqiu, QIAO Yunfa, ZHU Baoguo, MIAO Shujie. The Response of N2O Emissions to Straw Returning and Biochar Addition During Maize Growing Season in Mollisol [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 79-85. | 
| [12] | NIE Dahang, CHEN Leilei, LIU Shuyan. Effect of Different Nitrogen Fertilizer and Organic Fertilizer Application Rates on the Yield and Nutrient Distribution of Tomato [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 32-35. | 
| [13] | ZHU Shijun, WANG Lili, JIN Shuquan, ZHOU Jinbo, LU Xiaohong. Effects of Bio-organic Fertilizer and Microbial Agents on Soil Fertility and Growth and Quality of Strawberry [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 36-43. | 
| [14] | WANG Zhen, LIN Tuanrong, WANG Wei, WANG Yufeng, LUO Xiaobo, YAO Bin. Double Reduction of Chemical Fertilizer and Pesticide in Potato Production [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 51-57. | 
| [15] | ZHAO Xiudong, CHEN Xiaofang, YUAN Ziran, YE Yin. Organic Fertilizer Substitution: Effects on Soil Nutrients [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 74-80. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||