Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (18): 131-137.doi: 10.11924/j.issn.1000-6850.casb2020-0454
Previous Articles Next Articles
Yang Bing1,2(), Ping Yuan1,2, Du Chunmei1,2(
)
Received:
2020-09-11
Revised:
2020-12-18
Online:
2021-06-25
Published:
2021-07-13
Contact:
Du Chunmei
E-mail:1296773000@qq.com;1487598102@qq.com
CLC Number:
Yang Bing, Ping Yuan, Du Chunmei. Pathogenic Mechanism and Control Method of Potato Scab: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 131-137.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0454
[1] | Majeed A, Muhammad Z, Ullah Z, et al. Late blight of potato (Phytophthora infestans) I: fungicides application and associated challenges[J]. Food Science and Technology, 2017,5(3):261-266. |
[2] | Majeed A, Muhammad Z. Potato production in Pakistan: challenges and prospective management strategies-A review[J]. Pakistan Journal of Botany, 2018,50(5):2077-2084. |
[3] |
Majeed A, Muhammad Z. An overview of the common bacterial diseases of potato in Pakistan, associated crop losses and control stratagems[J]. Journal of Plant Pathology, 2020,102(1):3-10.
doi: 10.1007/s42161-019-00362-y URL |
[4] | 李智媛. 黑龙江省马铃薯疮痂病综合防控技术[J]. 黑龙江农业科学, 2019(9):156-157. |
[5] | Lankau E W, Xue D, Chrisensen R, et al. Management and soil conditions influence common scab severity on potato tubers via indirect effects on soil microbial communities[J]. Phytopathology, 2020,110(5):1-32. |
[6] |
Leiminger J, Frank M, Wenk C, et al. Distribution and characterization of Streptomyces species causing potato common scab in Germany[J]. Plant Pathology, 2013,62(3):611-623.
doi: 10.1111/ppa.2013.62.issue-3 URL |
[7] |
Hiltunen L H, Kelloniemi J, Valkonen J P T, et al. Repeated applications of a nonpathogenic Streptomyces strain enhance development of suppressiveness to potato common scab[J]. Plant Disease, 2017,101(1):224-232.
doi: 10.1094/PDIS-07-16-1020-RE URL |
[8] |
Santos-Cervantes M E, Felix-Gastelum R, Herrera-Rodríguez G, et al. Characterization, pathogenicity and chemical control of Streptomyces acidiscabies associated to potato common scab[J]. American Journal of Potato Research, 2017,94(1):14-25.
doi: 10.1007/s12230-016-9541-5 URL |
[9] | Johansen T J, Dees M W, Hermansen A. High soil moisture reduces common scab caused by Streptomyces turgidiscabies and Streptomyces europaeiscabiei in potato[J]. Acta Agriculturae Scandinavica, 2015,65(3):193-198. |
[10] |
Chen S F, Zhang M S, Wang J Y, et al. Biocontrol effects of Brevibacillus laterosporus AMCC100017 on potato common scab and its impact on rhizosphere bacterial communities[J]. Biological Control, 2017,106:89-98.
doi: 10.1016/j.biocontrol.2017.01.005 URL |
[11] | 李爽, 杨美军, 张云, 等. 马铃薯疮痂病研究进展[J]. 中国马铃薯, 2018,32(04):240-248. |
[12] |
Healy F G, Wach M, Krasnoff S B, et al. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity[J]. Molecular Microbiology, 2010,38(4):794-804.
doi: 10.1046/j.1365-2958.2000.02170.x URL |
[13] | Li Y, Liu J, Diaz C, et al. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review[J]. Micbiogology, 2019,165(10):1025-1040. |
[14] |
Padilla-Reynaud R, Simao-Beaunoir A M, Lerat S,, et al. Suberin regulates the production of cellulolytic enzymes in Streptomyces scabiei, the causal agent of potato common scab[J]. Microbes and Environments, 2015,30(3):245-253.
doi: 10.1264/jsme2.ME15034 pmid: 26330095 |
[15] |
Joshi M V, Bignell D R D, Johnson E G, et al. The AraC/XylS regulator TxtR modulates thaxtomin biosynjournal and virulence in Streptomyces scabies[J]. Molecular Microbiology, 2010,66(3):633-642.
doi: 10.1111/mmi.2007.66.issue-3 URL |
[16] |
Lerat S, Simao-Beaunoir A M, Beaulieu C. Genetic and physiological determinants of Streptomyces scabies pathogenicity[J]. Molecular Plant Pathology, 2009,10(5):579-585.
doi: 10.1111/mpp.2009.10.issue-5 URL |
[17] |
Volker B, Jane C S, Shuang W, et al. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings[J]. Journal of Experimental Botany, 2009,60(3):955-965.
doi: 10.1093/jxb/ern344 URL |
[18] |
Scheible W R, Fry B, Kochevenko A, et al. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synjournal inhibitor from Streptomyces species[J]. The Plant Cell, 2003,15(8):1781-1794.
doi: 10.1105/tpc.013342 URL |
[19] |
Lerat S, Babana A H, Oirdi M E, et al. Streptomyces scabiei and its toxin thaxtomin A induce scopoletin biosynjournal in tobacco and Arabidopsis thaliana[J]. Plant Cell Reports, 2009,28(12):1895-1903.
doi: 10.1007/s00299-009-0792-1 URL |
[20] |
Liang F, Lin R, Yao Y, et al. Systematic identification of pathogenic Streptomyces sp. AMCC400023 that causes common scab and genomic analysis of its pathogenicity island[J]. Phytopathology, 2019,109(7):1115-1128.
doi: 10.1094/PHYTO-07-18-0266-R URL |
[21] |
Guan D, Grau B L, Clark C A, et al. Evidence that thaxtomin C is a pathogenicity determinant of Streptomyces ipomoeae, the causative agent of Streptomyces soil rot disease of sweet potato[J]. Molecular plant-microbe interactions, 2012,25(3):393-401.
doi: 10.1094/MPMI-03-11-0073 URL |
[22] |
Barry S M, Kers J A, Johnson E G, et al. Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynjournal[J]. Nature Chemical Biology, 2012,8(10):814-816.
doi: 10.1038/nchembio.1048 URL |
[23] | Braun S, Gevens A, Charkowski A, et al. Potato common scab: A review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance[J]. American Potato Research, 2017,94(12):283-296. |
[24] | Cullen D W, Lees A K. Detection of the nec1 virulence gene and its correlation with pathogenicity in Streptomyces species on potato tubers and in soil using conventional and real-time PCR[J]. Journal of Applied Microbiology, 2007,102(4):1082-1094. |
[25] |
Kers J A, Cameron K D, Joshi M V, et al. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species[J]. Molecular Microbiology, 2010,55(4):1025-1033.
doi: 10.1111/j.1365-2958.2004.04461.x URL |
[26] |
Hiltunen L H, Weckman A, Ylhinen A, et al. Responses of potato cultivars to the common scab pathogens, Streptomyces scabies and S. turgidiscabies[J]. Annals of Applied Biology, 2015,146(3):395-403.
doi: 10.1111/aab.2005.146.issue-3 URL |
[27] |
Joshi M V, Loria R. Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls[J]. Molecular plant-microbe interactions, 2007,20(7):751-758.
doi: 10.1094/MPMI-20-7-0751 URL |
[28] |
Legault G S, Lerat S, Nicolas P, et al. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings[J]. Phytopathology, 2011,101(9):1045-1051.
doi: 10.1094/PHYTO-03-11-0064 URL |
[29] |
Patten C L, Blakney A J C, Coulson T J D. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria[J]. Critical Reviews in Microbiology, 2013,39(4):395-415.
doi: 10.3109/1040841X.2012.716819 URL |
[30] |
Weingart H, Ullrich H, Geider K, et al. The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola[J]. Phytopathology, 2001,91(5):511-518.
doi: 10.1094/PHYTO.2001.91.5.511 pmid: 18943596 |
[31] |
Tegg R S, Corkrey R, Wilson C R. Relationship between the application of foliar chemicals to reduce common scab disease of potato and correlation with thaxtomin A toxicity[J]. Plant Disease, 2012,96(1):97-103.
doi: 10.1094/PDIS-05-11-0397 URL |
[32] |
Clarke C R, Tegg R S, Thompson H K, et al. Low-dose foliar treatments of the auxin analog 2,4-D reduce potato common scab and powdery scab for multiple potato cultivars and enhance root development[J]. Crop Protection, 2020,136:105208.
doi: 10.1016/j.cropro.2020.105208 URL |
[33] |
Hosny M, Abo-Elyousr K A M, Asran M R, et al. Chemical control of potato common scab disease under field conditions[J]. Archives of Phytopathology and Plant Protection, 2014,47(1):2193-2199.
doi: 10.1080/03235408.2013.870375 URL |
[34] | Lindsey A P J, Murugan S, Renitta R E. Microbial disease management in agriculture: Current status and future prospects[J]. Biocatalysis and Agricultural Biotechnology, 2020,23(10):1-32. |
[35] |
Larkin R P, Griffin T S, Honeycutt C W. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities[J]. Plant Disease, 2010,94(12):1491-1502.
doi: 10.1094/PDIS-03-10-0172 URL |
[36] |
Sakuma F, Maeda M, Takahashi M, et al. Suppression of common scab of potato caused by Streptomyces turgidiscabies using lopsided oat green manure[J]. Plant Disease, 2011,95(9):1124-1130.
doi: 10.1094/PDIS-08-10-0615 URL |
[37] |
Larkin R P, Griffin T S. Control of soilborne potato diseases using brassica green manures[J]. Crop Protection, 2007,26(7):1067-1077.
doi: 10.1016/j.cropro.2006.10.004 URL |
[38] |
Dees M W, Wanner L A. In search of better management of potato common scab[J]. Potato Research, 2012,55(3-4):249-268.
doi: 10.1007/s11540-012-9206-9 URL |
[39] | Cui L X, Yang C D, Wei L J, et al. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab[J]. Biological Control, 2019,141(19):1-20. |
[40] |
Meng Q X, Hanson L E, Douches D, et al. Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens BAC03 and other biomaterials[J]. Biological Control, 2013,67(3):373-379.
doi: 10.1016/j.biocontrol.2013.09.009 URL |
[41] |
Singhai P K, Sarma B K, Srivastava J S. Biological management of common scab of potato through Pseudomonas species and vermicompost[J]. Biological Control, 2011,57(2):150-157.
doi: 10.1016/j.biocontrol.2011.02.008 URL |
[42] |
Arseneault T, Roquigny R, Novinscak A, et al. Phenazine-1-carboxylic acid-producing Pseudomonas synxantha LBUM223 alters the transcriptome of Streptomyces scabies, the causal agent of potato common scab[J]. Physiological and Molecular Plant Pathology, 2020,110:101480.
doi: 10.1016/j.pmpp.2020.101480 URL |
[43] |
Julie B, Clermont N, Beaulieu C. Effect of Streptomyces melanosporofaciens strain EF-76 and of chitosan on common scab of potato[J]. Plant and Soil, 2003,256(2):463-468.
doi: 10.1023/A:1026177714855 URL |
[44] |
Zhang X Y, Li C, Hao J J, et al. A novel Streptomyces sp. strain PBSH9 for controlling potato common scab caused by Streptomyces galilaeus[J]. Plant disease, 2020,104(7):430-439.
doi: 10.1094/PDIS-03-19-0659-RE URL |
[45] |
Sarwar A, Latif Z, Zhang S Y, et al. A potential biocontrol agent Streptomyces violaceusniger AC12AB for managing potato common scab[J]. Frontiers in Microbiology, 2019,10(2) 1-10.
doi: 10.3389/fmicb.2019.00001 URL |
[46] |
Arslan S, Zakia L, Songya Z, et al. Biological control of potato common scab with rare Isatropolone C compound produced by plant growth promoting Streptomyces A1RT[J]. Frontiers in Microbiology, 2018,9(1):1126-1130.
doi: 10.3389/fmicb.2018.01126 URL |
[47] | Muhammad R, Aftab B. Evaluation of different antagonistic fungi against common scab of potato[J]. Mycopathologia, 2014,12(1):63-67. |
[48] | 翟一军, 徐霞, 廖晓兰. 拮抗细菌与其他生防因子复配防治植物病害研究进展[J]. 微生物学杂志, 2012,32(3):72-75. |
[49] |
Wang Z S, Li Y, Zhuang L B, et al. A rhizosphere-derived consortium of Bacillus subtilis and Trichoderma harzianum suppresses common scab of potato and increases yield[J]. Computational and Structural Biotechnology Journal, 2019,17(5):645-653.
doi: 10.1016/j.csbj.2019.05.003 URL |
[50] |
Larkin R P. Biological control of soilborne diseases in organic potato production using hypovirulent strains of Rhizoctonia solani[J]. Biological Agriculture and Horticulture, 2020,36(2):119-129.
doi: 10.1080/01448765.2019.1706636 URL |
[1] | HU Shuai, LUO Liping, SUN Meng, YANG Yu, WEN Junbao. Combined Control of Semanotus bifasciatus by Pyemotes zhonghuajia and Scleroderma guani [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 107-111. |
[2] | ZENG Duanxiang, YU Xiyue, YU Jingwen, JIA Jianping, PENG Deliang, HUANG Wenkun. Detection and Integrated Control Technology of Bursaphelenchus xylophilus [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 86-91. |
[3] | YAN Fangfang, KONG Chuixu, ZHANG Yingjie, MAO Min, JIAN Lianjun, WANG Rong. Biological Control of Tobacco Root-knot Nematode Disease by Penicillium purpurogenum K1 [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 103-108. |
[4] | YANG Xiaoxiang, HUANG Xiaoqin, ZHANG Lei, ZHANG Zhongmei, XIAN Yunxi, ZHOU Xiquan, LIU Yong. Biocontrol Fungus Coniothyrium minitans: Effects on Microbial Community Structure in Oilseed Rape Rhizosphere Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 92-98. |
[5] | SHEN Xiuxian, TIAN Tai’an, LIU Jianfeng, YU Xiaofei, DONG Xiangli, LI Zhimo, YANG Maofa. The 5th Instar Nymph of Picromerus lewisi: Predation Responses to Different Instars of Mythimna seperata [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 116-120. |
[6] | FU Huijuan, LI Xingyue, YI Jun, LI Qiyong, XU Bingzhi, CHEN Youhua, LUO Congcong, ZHANG Hong. Major Biological Disasters of Dry Farming in Sichuan Hilly Areas: Control Strategy and Technology [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 140-147. |
[7] | SONG Xiaobing, HUANG Feng, LUO Xiaoling, LIN Peihua, PENG Aitian, LING Jinfeng, CUI Yiping. Pyraclostrobin: Toxicity Determination and Control Effect on the Pathogens of Two Rare Fruits [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 125-128. |
[8] | LI Xiaoyan, NI Chang, LIU Xu. Effects of Different Control Methods on Root-knot Nematode of Greenhouse Cucumber [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 130-133. |
[9] | LIU Long, RONG Hua, ZHENG Tongtong, MA Junjie, GUO Qingyuan. Antifungal and Control Effect of Bacillus mojavensis on Pear Valsa Canker [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 140-146. |
[10] | REN Chunyan, LIU Jie, LUO Minghua, NIE Zhongyang, HUANG Ning, ZHAO Haiyan, TANG Liangde. A Review on Arma chinensis Fallou (Hemiptera: Pentatomidae): A Natural Enemy Insect [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 100-109. |
[11] | LUO Zhenya, LIN Shaoyuan, QUAN Linfa, CHI Yanyan, CHEN Bingxu, XU Shu. Six Insecticides Against Spodoptera frugiperda in Maize: Field Application Evaluation in Guangdong [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 124-130. |
[12] | Xu Mingyu, Du Chunmei. The Control of Citrus Blue Mold: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 142-148. |
[13] | Lu Qiucheng, Liu Dongyang, Wang Yong, Xu Jinlan, Jiang Lianqiang, Liu Chao, Cai Peng, Li Yuejian, He Hengguo, Pu Deqiang. Effects of Different Carotene Concentrations and Feed Preparation Methods on Larvae of Coccinella Septempunctata [J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 82-87. |
[14] | Ji Yanfei, Dong Xinxin, Tian Ye, Zhang Jie, Yang Hongyi. PGPR: The Biological Control Mechanism and Potential as Biological Control Agent [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 141-149. |
[15] | Shen Yan, He Pengbo, He Pengfei, Wu Yixin, Kong Baohua, Li Xingyu, Shahzad Munir, He Yueqiu. Pathogen Identification and Biological Control of Gray Mold on Postharvest Tomato [J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 102-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||