Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (14): 141-149.doi: 10.11924/j.issn.1000-6850.casb2020-0295
Special Issue: 植物保护
Previous Articles Next Articles
Ji Yanfei(), Dong Xinxin, Tian Ye, Zhang Jie(
), Yang Hongyi(
)
Received:
2020-07-26
Revised:
2020-09-30
Online:
2021-05-15
Published:
2021-05-19
Contact:
Zhang Jie,Yang Hongyi
E-mail:airo4017@nefu.edu.cn;zhangjie1972@nefu.edu.cn;18830701@nefu.edu.cn
CLC Number:
Ji Yanfei, Dong Xinxin, Tian Ye, Zhang Jie, Yang Hongyi. PGPR: The Biological Control Mechanism and Potential as Biological Control Agent[J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 141-149.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0295
生防菌株 | 菌株来源(根际) | 病原菌 | 参考文献 |
---|---|---|---|
Bacillus amyloliquefaciens | Triticum aestivum | Fusarium graminearum | |
Bipolaris sorokiniana | |||
Fusarium oxysporum | |||
Alternaria alternata | |||
Colletotrichum gloeosporioides | |||
Botryosphaeria ribis | [ | ||
Bacillus velezensis | Lycopersicum esculentum | Verticillium dahliae | [ |
Bacillus sp. | Lycopersicum esculentum | Fusarium oxysporum | |
Pythium aphanidermatum | |||
Colletotrichum capsici | |||
Sclerotium rolfsii | [ | ||
Pennisetum glaucum | Rhizoctonia solani | ||
Sclerotium rolfsii | |||
Fusarium solani | [ | ||
Zea mays | Pythium irregulare | ||
Aspergillus niger | |||
Fusarium solani | |||
Fusarium oxysporum | |||
Rhizoctonia solani | |||
Alternaria alternata | [ | ||
Pantoea dispersa | Ipomoea batatas | Ceratocystis fimbriata | [ |
Pestalootiopsis sp. | Photinia prionophylla | Aecidium pourthiaea | [ |
Pseudomonas fluorescens | Capsicum annuum | Botrytis cinerea | [ |
Staphylococcus equorum | Salicornia hispanica | Agrobacterium fabrum | [ |
Streptomyces sp. | Lycopersicum esculentum | Fusarium oxysporum | [ |
生防菌株 | 菌株来源(根际) | 病原菌 | 参考文献 |
---|---|---|---|
Bacillus amyloliquefaciens | Triticum aestivum | Fusarium graminearum | |
Bipolaris sorokiniana | |||
Fusarium oxysporum | |||
Alternaria alternata | |||
Colletotrichum gloeosporioides | |||
Botryosphaeria ribis | [ | ||
Bacillus velezensis | Lycopersicum esculentum | Verticillium dahliae | [ |
Bacillus sp. | Lycopersicum esculentum | Fusarium oxysporum | |
Pythium aphanidermatum | |||
Colletotrichum capsici | |||
Sclerotium rolfsii | [ | ||
Pennisetum glaucum | Rhizoctonia solani | ||
Sclerotium rolfsii | |||
Fusarium solani | [ | ||
Zea mays | Pythium irregulare | ||
Aspergillus niger | |||
Fusarium solani | |||
Fusarium oxysporum | |||
Rhizoctonia solani | |||
Alternaria alternata | [ | ||
Pantoea dispersa | Ipomoea batatas | Ceratocystis fimbriata | [ |
Pestalootiopsis sp. | Photinia prionophylla | Aecidium pourthiaea | [ |
Pseudomonas fluorescens | Capsicum annuum | Botrytis cinerea | [ |
Staphylococcus equorum | Salicornia hispanica | Agrobacterium fabrum | [ |
Streptomyces sp. | Lycopersicum esculentum | Fusarium oxysporum | [ |
[1] | 张亮, 盛浩, 袁红, 等. 根际促生菌防控土传病害的机理与应用进展[J]. 土壤通报, 2018,49(1):220-225. |
[2] | 张艺灿, 刘凤之, 王海波. 根际溶磷微生物促生机制研究进展[J]. 中国土壤与肥料, 2020: 7-15. |
[3] | Strange R N, Scott P R. Plant disease: a threat to global food security[J]. Annual Review of Phytopathology, 2005,43. |
[4] | Doehlemann G, Ökmen B, Zhu W, et al. Plant pathogenic fungi[J]. The Fungal Kingdom, 2017: 701-726. |
[5] |
Rahman S F S, Singh E, Pieterse C M J, et al. Emerging microbial biocontrol strategies for plant pathogens[J]. Plant Science, 2018,267:102-111.
doi: 10.1016/j.plantsci.2017.11.012 URL |
[6] |
Lugtenberg B J, Kamilova F. Plant-Growth-Promoting Rhizobacteria[J]. Annual Review of Microbiology, 2009,63(1):541-556.
doi: 10.1146/annurev.micro.62.081307.162918 URL |
[7] |
Tabassum B, Khan A, Tariq M, et al. Bottlenecks in commercialisation and future prospects of PGPR[J]. Applied Soil Ecology, 2017,121:102-117.
doi: 10.1016/j.apsoil.2017.09.030 URL |
[8] |
Degenhardt J, Gershenzon J, Baldwin I T, et al. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies[J]. Current Opinion in Biotechnology, 2003,14:169-176.
doi: 10.1016/S0958-1669(03)00025-9 URL |
[9] | Hida A, Oku S, Miura M, et al. Characterization of methyl-accepting chemotaxis proteins (MCPs) for amino acids in plant-growth-promoting rhizobacterium Pseudomonas protegens CHA0 and enhancement of amino acid chemotaxis by MCP genes overexpression[J].Bioscience Biotechnology and Biochemistry, 2020,undefined:1-10. |
[10] |
Xiong Y, Li X, Wang T, et al. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress[J]. Ecotoxicology and Environmental Safety, 2020,194:110374.
doi: 10.1016/j.ecoenv.2020.110374 URL |
[11] |
Ankati S, Podile A R. Metabolites in the root exudates of groundnut change during interaction with plant growth promoting rhizobacteria in a strain-specific manner[J]. Journal of Plant Physiology, 2019,243:153057.
doi: 10.1016/j.jplph.2019.153057 URL |
[12] | Molina L, Segura A, Duque E, et al. The versatility of Pseudomonas putida in the rhizosphere environment[J]. Advances in Applied Microbiology, 2020,110:149-180. |
[13] |
Khan N, Bano A. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions[J]. PLoS ONE, 2019,14:e0222302.
doi: 10.1371/journal.pone.0222302 URL |
[14] |
Wang D, Jiang C, Zhang L, et al. Biofilms Positively Contribute to Bacillus amyloliquefaciens 54-induced Drought Tolerance in Tomato Plants[J]. International Journal of Molecular Sciences, 2019,20(24):6271.
doi: 10.3390/ijms20246271 URL |
[15] | Khan A, Singh P, Srivastava A. Synjournal, nature and utility of universal iron chelator-Siderophore: A review[J]. Microbiological Research, 2018,212:103-111. |
[16] |
Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects[J]. Applied and Environmental Microbiology, 2005,71(9):4951-4959.
doi: 10.1128/AEM.71.9.4951-4959.2005 URL |
[17] |
Sheng M M, Jia H K, Zhang G Y, et al. Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans[J]. Journal of Microbiology and Biotechnology, 2020,30:689-699.
doi: 10.4014/jmb.1910.10066 pmid: 32160686 |
[18] |
Houšť J, Spížek J, Havlíček V. Antifungal Drugs[J]. Metabolites, 2020,10(3):106.
doi: 10.3390/metabo10030106 URL |
[19] |
He Z, Yang X. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils[J]. Journal of Zhejiang University Science B, 2007,8(3):192-207.
doi: 10.1631/jzus.2007.B0192 URL |
[20] |
Wang X, Wang C, Li Q, et al. Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil‐borne wheat diseases[J]. Journal of Applied Microbiology, 2018,125(6):1868-1880.
doi: 10.1111/jam.2018.125.issue-6 URL |
[21] | 李梦婕, 谢津, 李向楠, 等. 石楠锈孢锈菌重寄生现象及其重寄生菌的种类鉴定[J]. 东北林业大学学报, 2016,44(5):92-96. |
[22] |
Dutta S, Yu S M, Jeong S C, et al. High‐throughput analysis of genes involved in biocontrol performance of Pseudomonas fluorescens NBC275 against Gray mold[J]. Journal of Applied Microbiology, 2020,128(1):265-279.
doi: 10.1111/jam.14475 pmid: 31574191 |
[23] |
Hu X, Qin L, Roberts D P, et al. Characterization of mechanisms underlying degradation of sclerotia of Sclerotinia sclerotiorum by Aspergillus aculeatus Asp-4 using a combined qRT-PCR and proteomic approach[J]. BMC Genomics, 2017,18(1):674.
doi: 10.1186/s12864-017-4016-8 URL |
[24] |
Jiménez J A, Novinscak A, Filion M. Pseudomonas fluorescens LBUM677 differentially increases plant biomass, total oil content and lipid composition in three oilseed crops[J]. Journal of Applied Microbiology, 2020,128(4):1119-1127.
doi: 10.1111/jam.14536 pmid: 31793115 |
[25] |
Gupta V, Kumar G N, Buch A. Colonization by multi-potential Pseudomonas aeruginosa P4 stimulates peanut (Arachis hypogaea L.) growth, defence physiology and root system functioning to benefit the root-rhizobacterial interface[J]. Journal of Plant Physiology, 2020,248:153144.
doi: 10.1016/j.jplph.2020.153144 URL |
[26] | Guevara-Avendaño E, Bravo-Castillo K R, Monribot-Villanueva J L , et al. Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium[J]. Brazilian Journal of Microbiology, 2020: 1-13. |
[27] |
Ebadzadsahrai G, Keppler E A H, Soby S D , et al. Inhibition of Fungal Growth and Induction of a Novel Volatilome in Response to Chromobacterium vaccinii Volatile Organic Compounds[J]. Frontiers in Microbiology, 2020,11:1035.
doi: 10.3389/fmicb.2020.01035 pmid: 32508802 |
[28] |
Massawe V C, Hanif A, Farzand A, et al. Volatile Compounds of Endophytic Bacillus spp. have Biocontrol Activity Against Sclerotinia sclerotiorum[J]. Phytopathology, 2018,108:1373-1385.
doi: 10.1094/PHYTO-04-18-0118-R URL |
[29] |
Abdal D A, Hossain M K, Lee S B, et al. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles[J]. International Journal of Molecular Sciences, 2017,18:120.
doi: 10.3390/ijms18010120 URL |
[30] |
Syed-Ab-Rahman S F, Carvalhais L C, Chua E T, et al. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth[J]. Science of The Total Environment, 2019,692:267-280.
doi: 10.1016/j.scitotenv.2019.07.061 pmid: WOS:000484994700028 |
[31] |
Bloemberg G V, Lugtenberg B J J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria[J]. Current Opinion in Plant Biology, 2001,4(4):343-350.
doi: 10.1016/S1369-5266(00)00183-7 URL |
[32] |
Chen M, Wang J, Liu B, et al. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides[J]. BMC Microbiology, 2020,20:160.
doi: 10.1186/s12866-020-01851-2 URL |
[33] |
Yan F, Li C, Ye X, et al. Antifungal activity of lipopeptides from Bacillus amyloliquefaciens MG3 against Colletotrichum gloeosporioides in loquat fruits[J]. Biological Control, 2020,146:104281.
doi: 10.1016/j.biocontrol.2020.104281 URL |
[34] |
Dunlap C A, Bowman M J, Rooney A P. Bacillus subtilis Iturinic Lipopeptide Diversity in the Species Group - Important Antifungals for Plant Disease Biocontrol Applications[J]. Frontiers in Microbiology, 2019,10:1794.
doi: 10.3389/fmicb.2019.01794 URL |
[35] | Ben A D, Frikha-Gargouri O, Tounsi S. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a[J]. Biological Control, 2018: S1049964418300422. |
[36] |
Chen X, Scholz R, Borriss M D, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease[J]. Journal of Biotechnology, 2009,140(1):38-44.
doi: 10.1016/j.jbiotec.2008.10.015 URL |
[37] |
Han S, Song M, Keum Y. Effects of Azole Fungicides on Secreted Metabolomes of Botrytis cinerea[J]. Journal of Agricultural and Food Chemistry, 2020,68:5309-5317.
doi: 10.1021/acs.jafc.0c00696 URL |
[38] |
Morimura H, Ito M, Yoshida S, et al. In Vitro Assessment of Biocontrol Effects on Fusarium Head Blight and Deoxynivalenol (DON) Accumulation by DON-Degrading Bacteria[J]. Toxins (Basel), 2020,12:339.
doi: 10.3390/toxins12050339 URL |
[39] | Du N, Shi L, Yuan Y, et al. Proteomic Analysis Reveals the Positive Roles of the Plant-Growth-Promoting Rhizobacterium NSY50 in the Response of Cucumber Roots to Fusarium oxysporum f. sp. cucumerinum Inoculation[J]. Frontiers in Plant Science, 2016,7:1859. |
[40] | Simonetti E, Roberts I N, Montecchia M S, et al. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth[J]. Microbiological Research, 2018: 50-59. |
[41] |
Yang X, Chen X, Song Z, et al. Antifungal, Plant Growth-Promoting, and Mycotoxin Detoxication Activities of Burkholderia sp. Strain XHY-12[J]. 3 Biotech, 2020,10:158.
doi: 10.1007/s13205-020-2112-y URL |
[42] | Liu J, Wang X, Zhang T, et al. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere[J]. Microbiological Research, 2017: 118-124. |
[43] |
Ji C, Fan Y, Zhao L. Review on biological degradation of mycotoxins[J]. Animal Nutrition, 2016,2(3):127-133.
doi: 10.1016/j.aninu.2016.07.003 URL |
[44] | Ruben S, Garbe E, Mogavero S, et al. Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans[J]. mBio, 2020,11:e00206-20. |
[45] |
Aqawi M, Gallily R, Sionov R V, et al. Cannabigerol Prevents Quorum Sensing and Biofilm Formation of Vibrio harveyi[J]. Frontiers in Microbiology, 2020,11:858.
doi: 10.3389/fmicb.2020.00858 pmid: 32457724 |
[46] |
Vega C, Rodríguez M, Llamas I, et al. Silencing of Phytopathogen Communication by the Halotolerant PGPR Staphylococcus equorum Strain EN21[J]. Microorganisms, 2019,8:42.
doi: 10.3390/microorganisms8010042 URL |
[47] |
Pawar S, Chaudhari A, Prabha R, et al. Microbial Pyrrolnitrin: Natural Metabolite with Immense Practical Utility[J]. Biomolecules, 2019,9:443.
doi: 10.3390/biom9090443 URL |
[48] |
Ye T, Zhou T, Fan X, et al. Acinetobacter lactucae Strain QL-1, a Novel Quorum Quenching Candidate Against Bacterial Pathogen Xanthomonas campestris Pv. Campestris[J]. Frontiers in Microbiology, 2019,10:2867.
doi: 10.3389/fmicb.2019.02867 URL |
[49] |
Rodríguez M, Torres M, Blanco L, et al. Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6[J]. Scientific Reports, 2020,10:4121.
doi: 10.1038/s41598-020-61084-1 pmid: 32139754 |
[50] |
Leon A P, Plasencia J, Vazquezduran A, et al. Comparison of the In Vitro Antifungal and Anti-fumonigenic Activities of Copper and Silver Nanoparticles Against Fusarium verticillioides[J]. Journal of Cluster Science, 2020,31(1):213-220.
doi: 10.1007/s10876-019-01638-0 URL |
[51] |
Guo D, Yuan C, Luo Y, et al. Biocontrol of tobacco black shank disease (Phytophthora nicotianae) by Bacillus velezensis Ba168[J]. Pesticide Biochemistry and Physiology, 2020,165:104523.
doi: 10.1016/j.pestbp.2020.01.004 URL |
[52] |
Rashid M, Chung Y R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes[J]. Frontiers in Plant Science, 2017,8:1816.
doi: 10.3389/fpls.2017.01816 URL |
[53] | Noman A, Aqeel M, Irshad M K, et al. Elicitins as molecular weapons against pathogens: consolidated biotechnological strategy for enhancing plant growth[J].Critical Reviews in Biotechnology, 2020,undefined:1-12. |
[54] |
Kang X, Wang L, Guo Y, et al. A Comparative Transcriptomic and Proteomic Analysis of Hexaploid Wheat s Responses to Colonization by Bacillus velezensis and Gaeumannomyces graminis, Both Separately and Combined[J]. Molecular Plant-Microbe Interactions, 2019,32(10):1336-1347.
doi: 10.1094/MPMI-03-19-0066-R URL |
[55] |
Hashem A, Tabassum B, Abd-Allah E F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences, 2019,26(6):1291-1297.
doi: 10.1016/j.sjbs.2019.05.004 pmid: 31516360 |
[56] |
Venegas-Molina J, Proietti S, Pollier J, et al. Induced tolerance to abiotic and biotic stresses of broccoli and Arabidopsis after treatment with elicitor molecules[J]. Scientific Reports, 2020,10:10319.
doi: 10.1038/s41598-020-67074-7 pmid: 32587286 |
[57] |
Abbasi S, Safaie N, Sadeghi A, et al. Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms[J]. Frontiers in Microbiology, 2019,10:1505.
doi: 10.3389/fmicb.2019.01505 URL |
[58] |
Yuan M, Huang Y, Ge W, et al. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber[J]. BMC Genomics, 2019,20(1):1-13.
doi: 10.1186/s12864-018-5379-1 URL |
[59] | Dhouib H, Zouari I, Abdallah D B, et al. Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease[J]. Biological Control, 2019. |
[60] |
Amna, Xia Y, Farooq M A, et al. Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance[J]. Plant Physiology and Biochemistry, 2020,151:640-649.
doi: 10.1016/j.plaphy.2020.04.016 URL |
[61] |
Amaresan N, Jayakumar V, Kumar K, et al. Biocontrol and plant growth-promoting ability of plant-associated bacteria from tomato (Lycopersicum esculentum) under field condition[J]. Microbial Pathogenesis, 2019,136:103713.
doi: 10.1016/j.micpath.2019.103713 URL |
[62] |
Kushwaha P, Kashyap P L, Srivastava A K, et al. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet ( Pennisetum glaucum )[J]. Brazilian Journal of Microbiology, 2020,51(1):229-241.
doi: 10.1007/s42770-019-00172-5 pmid: WOS:000494186200001 |
[63] |
Santos M S, Nogueira M A, Hungria M. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture[J]. AMB Express, 2019,9(1):205.
doi: 10.1186/s13568-019-0932-0 URL |
[64] |
Grossi C E M, Fantino E, Serral F, et al. Methylobacterium sp. 2A Is a Plant Growth-Promoting Rhizobacteria That Has the Potential to Improve Potato Crop Yield Under Adverse Conditions[J]. Frontiers in Plant Science, 2020,11:71.
doi: 10.3389/fpls.2020.00071 URL |
[65] |
Zhang J, Fu B, Lin Q, et al. Colonization of Beauveria bassiana 08F04 in root-zone soil and its biocontrol of cereal cyst nematode (Heterodera filipjevi)[J]. PLoS ONE, 2020,15:e0232770.
doi: 10.1371/journal.pone.0232770 URL |
[66] | Jiang L, Jeong J C, Lee J S, et al. Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato[J]. Scientific Reports, 2019,9(1):1-13. |
[67] | Montes-Osuna N, Mercado-Blanco J. Verticillium Wilt of Olive and its Control: What Did We Learn during the Last Decade?[J]. Plants (Basel), 2020,9. |
[68] | Liu G, Kong Y, Fan Y, et al. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria[J]. Journal of Biotechnology, 2017,249:20-24. |
[69] | Cai X C, Liu C H, Wang B T, et al. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease[J]. Microbiological Research, 2017,196(Complete):89-94. |
[70] | Gislason, de Kievit. Friend or foe? Exploring the fine line between Pseudomonas brassicacearum and phytopathogens[J]. Journal of Medical Microbiology, 2020,69:347-360. |
[71] | Polcyn W, Paluchlubawa E, Lehmann T, et al. Arbuscular Mycorrhiza in Highly Fertilized Maize Cultures Alleviates Short-Term Drought Effects but Does Not Improve Fodder Yield and Quality[J]. Frontiers in Plant Science, 2019. |
[72] | Shao J, Li S, Zhang N, et al. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9[J]. Microbial Cell Factories, 2015,14(1):130. |
[73] | Godino A, Principe A, Fischer S. A ptsP deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere[J]. Research in Microbiology, 2016,167(3):178-189. |
[74] | Ali S, Hameed S, Imran A, et al. Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities[J]. Microbial Cell Factories, 2014,13(1):144. |
[75] | Kim J, Le K D, Yu N H, et al. Structure and antifungal activity of pelgipeptins from Paenibacillus elgii against phytopathogenic fungi[J]. Pesticide Biochemistry and Physiology, 2020: 154-163. |
[76] | Negash K H, Norris J K S, Hodgkinson J T. Siderophore-Antibiotic Conjugate Design: New Drugs for Bad Bugs?[J]. Molecules, 2019,24(18):3314. |
[1] | HU Shuai, LUO Liping, SUN Meng, YANG Yu, WEN Junbao. Combined Control of Semanotus bifasciatus by Pyemotes zhonghuajia and Scleroderma guani [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 107-111. |
[2] | YAN Fangfang, KONG Chuixu, ZHANG Yingjie, MAO Min, JIAN Lianjun, WANG Rong. Biological Control of Tobacco Root-knot Nematode Disease by Penicillium purpurogenum K1 [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 103-108. |
[3] | YANG Xiaoxiang, HUANG Xiaoqin, ZHANG Lei, ZHANG Zhongmei, XIAN Yunxi, ZHOU Xiquan, LIU Yong. Biocontrol Fungus Coniothyrium minitans: Effects on Microbial Community Structure in Oilseed Rape Rhizosphere Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 92-98. |
[4] | SHEN Xiuxian, TIAN Tai’an, LIU Jianfeng, YU Xiaofei, DONG Xiangli, LI Zhimo, YANG Maofa. The 5th Instar Nymph of Picromerus lewisi: Predation Responses to Different Instars of Mythimna seperata [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 116-120. |
[5] | FU Huijuan, LI Xingyue, YI Jun, LI Qiyong, XU Bingzhi, CHEN Youhua, LUO Congcong, ZHANG Hong. Major Biological Disasters of Dry Farming in Sichuan Hilly Areas: Control Strategy and Technology [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 140-147. |
[6] | LI Xiaoyan, NI Chang, LIU Xu. Effects of Different Control Methods on Root-knot Nematode of Greenhouse Cucumber [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 130-133. |
[7] | LIU Long, RONG Hua, ZHENG Tongtong, MA Junjie, GUO Qingyuan. Antifungal and Control Effect of Bacillus mojavensis on Pear Valsa Canker [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 140-146. |
[8] | REN Chunyan, LIU Jie, LUO Minghua, NIE Zhongyang, HUANG Ning, ZHAO Haiyan, TANG Liangde. A Review on Arma chinensis Fallou (Hemiptera: Pentatomidae): A Natural Enemy Insect [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 100-109. |
[9] | XING Qiming, JIN Wenjie, ZHOU Libin, LI Wenjian, LIU Ruiyuan, MA Jianzhong. Salt Tolerance of Plant Increased by Plant Growth Promoting Rhizobacteria: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 46-52. |
[10] | Xu Mingyu, Du Chunmei. The Control of Citrus Blue Mold: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 142-148. |
[11] | Lu Qiucheng, Liu Dongyang, Wang Yong, Xu Jinlan, Jiang Lianqiang, Liu Chao, Cai Peng, Li Yuejian, He Hengguo, Pu Deqiang. Effects of Different Carotene Concentrations and Feed Preparation Methods on Larvae of Coccinella Septempunctata [J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 82-87. |
[12] | Yang Bing, Ping Yuan, Du Chunmei. Pathogenic Mechanism and Control Method of Potato Scab: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 131-137. |
[13] | Shen Yan, He Pengbo, He Pengfei, Wu Yixin, Kong Baohua, Li Xingyu, Shahzad Munir, He Yueqiu. Pathogen Identification and Biological Control of Gray Mold on Postharvest Tomato [J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 102-107. |
[14] | Song Lili, Cong Lin, Zhang Yanru, Zhao Tingting, Jin Shulei, Wang Yanqun, Han Jie, Li Zicong. Advances in Biological Control of Leguminous Insect Pests [J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 113-120. |
[15] | Xueliang Xu, Zirong Liu, Shaomin Zeng, Xiaojuan Liu, Huiyun Fan, Yanzhang Huang, Yingjuan Yao, Fenshan Wang. Field Control Effect of Five Biological Agents on Main Potato Diseases [J]. Chinese Agricultural Science Bulletin, 2020, 36(9): 122-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||