Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (13): 35-41.doi: 10.11924/j.issn.1000-6850.casb2020-0770
Previous Articles Next Articles
Zhou Xin(), Miao Xiaolei, Yu Xuejun(
)
Received:
2020-12-10
Revised:
2021-03-15
Online:
2021-05-05
Published:
2021-05-18
Contact:
Yu Xuejun
E-mail:305859941@qq.com;438871887@qq.com
CLC Number:
Zhou Xin, Miao Xiaolei, Yu Xuejun. The Degradation Efficiency of Trametes hirsuta 27-1 Laccase on Phenolic Acids[J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 35-41.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0770
化合物 | 标准曲线 | R2 | 线性范围/(μg/L) |
---|---|---|---|
原儿茶酸 | Y=4.2654X-1.9390 | 0.99985 | 0.064~1.280 |
龙胆酸 | Y=2.1431X-2.3371 | 0.99984 | 0.021~0.820 |
对羟基苯甲酸 | Y=3.9147X-3.6120 | 0.99985 | 0.032~0.640 |
绿原酸 | Y=2.2957X-2.3821 | 0.99983 | 0.026~0.520 |
香草酸 | Y=8.9511X-4.6955 | 0.99987 | 0.028~1.560 |
咖啡酸 | Y=10.5631X-12.4554 | 0.99981 | 0.065~2.598 |
丁香酸 | Y=2.4513X-2.6354 | 0.99984 | 0.015~0.542 |
对香豆酸 | Y=6.3682X-4.7442 | 0.99985 | 0.047~1.231 |
阿魏酸 | Y=2.9674X-4.3961 | 0.99986 | 0.021~1.328 |
芥子酸 | Y=8.6588X-4.5453 | 0.99986 | 0.043~0.965 |
化合物 | 标准曲线 | R2 | 线性范围/(μg/L) |
---|---|---|---|
原儿茶酸 | Y=4.2654X-1.9390 | 0.99985 | 0.064~1.280 |
龙胆酸 | Y=2.1431X-2.3371 | 0.99984 | 0.021~0.820 |
对羟基苯甲酸 | Y=3.9147X-3.6120 | 0.99985 | 0.032~0.640 |
绿原酸 | Y=2.2957X-2.3821 | 0.99983 | 0.026~0.520 |
香草酸 | Y=8.9511X-4.6955 | 0.99987 | 0.028~1.560 |
咖啡酸 | Y=10.5631X-12.4554 | 0.99981 | 0.065~2.598 |
丁香酸 | Y=2.4513X-2.6354 | 0.99984 | 0.015~0.542 |
对香豆酸 | Y=6.3682X-4.7442 | 0.99985 | 0.047~1.231 |
阿魏酸 | Y=2.9674X-4.3961 | 0.99986 | 0.021~1.328 |
芥子酸 | Y=8.6588X-4.5453 | 0.99986 | 0.043~0.965 |
[1] | 高贵宾, 潘雁红, 吴良如, 等. 不同覆盖栽培年限雷竹林生物量分配格局研究[J]. 江西农业大学学报, 2015,37(4):663-669. |
[2] | 王海霞, 曾庆南, 程平. 不同覆盖材料及厚度对雷竹笋生产的影响研究[J]. 南方林业科学, 2020,48(4):34-39. |
[3] | 杨开, 杨振寰, 吴伟杰, 等. 雷笋膳食纤维酶法改性及其理化性能和结构变化[J]. 食品与发酵工业, 2019,45(4):36-41. |
[4] | 袁娜. 覆盖雷竹林土壤生化性质及其变化动态[D]. 北京:中国林业科学研究院, 2009. |
[5] |
Dashtban M, Schraft H, Syed, et al. Fungal biodegradation and enzymatic modification of lignin[J]. International Journal of Biochemistry and Molecular Biology, 2010,1(1):36-50.
pmid: 21968746 |
[6] | Pooja U, Rahul S, Pavan K A. Bioprospecting and biotechnological applications of fungal laccase[J]. Biotech, 2016,6(1):15. |
[7] |
Peng X, Yuan X Z, Liu H, et al. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Laccase in Rhamnolipid Reversed Micellar System[J]. Applied Biochemistry and Biotechnology, 2015,176(1). 45-55.
doi: 10.1007/s12010-015-1508-3 pmid: 25637508 |
[8] | 罗爽, 谢天, 刘忠川, 等. 漆酶/介体系统研究进展[J]. 应用与环境生物学报, 2015,21(6):987-995. |
[9] | 沈琦, 骆镜, 陈旖凡, 等. 生物炭固定杏鲍菇漆酶降解废水中的苯胺探究[J]. 南方农业, 2019,13(30):125-126. |
[10] | 谭叶林, 杜全能, 朱文娟, 等. 产漆酶细菌筛选鉴定及固体发酵条件研究[J]. 安徽农业科学, 2020,48(1):1-6. |
[11] |
Zhang J, Ren X, Chen W Q, et al. Biological pretreatment of corn stover by solid state fermentation of Phanerochaete chrysosporium[J]. Frontiers of Chemical Science and Engineering, 2012,6(2):146-151.
doi: 10.1007/s11705-012-1220-6 URL |
[12] | Hilgers R, Kabel M A, Vincken J P. On the reactivity of p-coumaroyl groups in lignin upon laccase and laccase/HBT treatments[J]. ACS Sustainable Chemistry & Engineering, 2020,8(23):8723-8731. |
[13] |
Ahmet U, Emre Bi, Filiz B, et al. Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes[J]. International Journal of Biological Macromolecules, 2020,150(1):871-884.
doi: 10.1016/j.ijbiomac.2020.02.006 URL |
[14] | 朱虹, 王宏伟, 杜威, 等. 内生真菌重组漆酶rLACB3修复花生连作土壤[J]. 生态学杂志, 2014,33(7):1920-1927. |
[15] | 李新鑫, 余学军, 俞暾, 等. 竹林环境中木质素降解菌株的分离鉴定[J]. 竹子学报, 2016,35(2):20-25. |
[16] | Arora D S, Gill P K . Effects of various media and supplements on laccase production by some white rot fungi[J]. Bioresource Technology, 2001,77(1):8-91. |
[17] | 陈芸, 马刘峰. 丁香酸和阿魏酸对大豆种子萌发及幼苗生长的影响[J]. 种子, 2017,36(1):108-111. |
[18] | 刘忠川, 王刚刚. 真菌漆酶结构与功能研究进展[J]. 生物物理学报, 2013,29(9):629-645. |
[19] | 林鹏飞, 贾小舟, 祁燕, 等. 酚酸类化合物研究进展[J]. 广东化工, 2017,44(1):50-52. |
[20] | 朱洪玲, 傅佳佳, 许波, 等. 漆酶催化4-氨基苯酚聚合[J]. 精细化工, 2018,35(4):620-624. |
[21] |
Eresa A, Jose G, Pazos M, et al. Enhanced production of laccase in Coriolopsis rigida grown on barley bran in flask or expanded-bed bioreactor[J]. World Journal of Microbiology & Biotechnology, 2007,23(8):1189-1194.
doi: 10.1007/s11274-006-9334-y URL |
[22] |
Dedeyan B, Klonowsk A, Tagger S, et al. Biochemical and Molecular Characterization of a Laccase from Marasmius quercophilus[J]. Applied and Environmental Microbiology, 2000,66(3):925-929.
doi: 10.1128/AEM.66.3.925-929.2000 URL |
[23] |
Gu Y H, Xue P, Jia F, et al. Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole[J]. Journal of Hazardous Materials, 2019,365(1). 118-124
doi: 10.1016/j.jhazmat.2018.10.076 URL |
[24] | Yanto D H Y, Auliana N, Anita S H, et al. Decolorization of synthetic textile dyes by laccase from newly isolated Trametes hirsuta EDN084 mediated by violuric acid[J]. IOP Conference Series: Earth and Environmental ence, 2019,374(1):012005. |
[25] |
Valls C, José F. C, Baffert C, et al. Comparing the efficiency of the laccase-NHA and laccase-HBT systems in eucalyptus pulp bleaching[J]. Biochemical Engineering Journal, 2010,49(3):401-407.
doi: 10.1016/j.bej.2010.02.002 URL |
[26] | 徐鑫, 张国庆, 胡渤洋, 等. 真菌漆酶及其介体系统:来源、机理与应用[J]. 生物技术进展, 2020,10(1):30-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||