Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (17): 134-143.doi: 10.11924/j.issn.1000-6850.casb20200200085
Previous Articles Next Articles
Lei Chunmiao1,3, Xiao Jianshe2,3(), Shi Feifei2,3, Guo Yingxiang1, Zhao Jinlong4, Zheng Ling1
Received:
2020-01-05
Revised:
2020-03-14
Online:
2020-06-15
Published:
2020-06-09
Contact:
Xiao Jianshe
E-mail:xiaojianshe@126.com
CLC Number:
Lei Chunmiao, Xiao Jianshe, Shi Feifei, Guo Yingxiang, Zhao Jinlong, Zheng Ling. Extraction Methods of Wolfberry Plantation in Qaidam Region: A Comparative Study[J]. Chinese Agricultural Science Bulletin, 2020, 36(17): 134-143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20200200085
分类方法 | 类型 (像元个数) | 地面真实类别(像元个数) | 用户 精度/% | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1~2年枸杞 | 3~6年枸杞 | 7~8年枸杞 | 城镇 | 道路 | 荒漠 | 湿地 | 行道树 | 总和 | ||||||||||||||
随机森林 | 1~2年枸杞 | 48 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 51 | 94.12 | |||||||||||
3~6年枸杞 | 0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 100 | ||||||||||||
7~8年枸杞 | 0 | 1 | 47 | 0 | 0 | 0 | 0 | 2 | 50 | 94 | ||||||||||||
城镇 | 0 | 0 | 0 | 27 | 0 | 1 | 0 | 0 | 28 | 96.43 | ||||||||||||
道路 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 18 | 100 | ||||||||||||
荒漠 | 2 | 0 | 0 | 1 | 2 | 28 | 2 | 0 | 35 | 80 | ||||||||||||
湿地 | 0 | 0 | 1 | 0 | 0 | 1 | 28 | 0 | 30 | 93.33 | ||||||||||||
行道树 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 28 | 30 | 93.33 | ||||||||||||
总和 | 50 | 50 | 50 | 30 | 20 | 30 | 30 | 30 | 290 | |||||||||||||
生产精度/% | 96 | 96 | 94 | 90 | 90 | 93.33 | 93.33 | 93.33 | 93.79* | 0.93** | ||||||||||||
Softmax | 1~2年枸杞 | 44 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 48 | 91.67 | |||||||||||
3~6年枸杞 | 1 | 43 | 0 | 1 | 0 | 0 | 0 | 0 | 45 | 95.56 | ||||||||||||
7~8年枸杞 | 0 | 2 | 45 | 0 | 0 | 0 | 0 | 2 | 51 | 88.24 | ||||||||||||
城镇 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 27 | 100 | ||||||||||||
道路 | 0 | 0 | 0 | 0 | 13 | 4 | 0 | 0 | 17 | 76.47 | ||||||||||||
荒漠 | 2 | 0 | 0 | 3 | 7 | 25 | 1 | 0 | 36 | 69.44 | ||||||||||||
湿地 | 3 | 4 | 2 | 0 | 0 | 1 | 28 | 0 | 37 | 75.68 | ||||||||||||
行道树 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 28 | 29 | 96.55 | ||||||||||||
实测总和 | 50 | 50 | 50 | 30 | 20 | 30 | 30 | 30 | 290 | |||||||||||||
生产精度/% | 88 | 86 | 90 | 83 | 65 | 83.33 | 93.33 | 93.33 | 86.55* | 0.84** | ||||||||||||
支持向量机 | 1~2年枸杞 | 44 | 0 | 1 | 1 | 5 | 1 | 6 | 0 | 58 | 75.86 | |||||||||||
3~6年枸杞 | 0 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 100 | ||||||||||||
7~8年枸杞 | 0 | 0 | 47 | 0 | 0 | 0 | 0 | 3 | 50 | 94 | ||||||||||||
城镇 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 25 | 100 | ||||||||||||
道路 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 12 | 100 | ||||||||||||
荒漠 | 2 | 0 | 0 | 3 | 3 | 29 | 1 | 0 | 38 | 76.32 | ||||||||||||
湿地 | 4 | 5 | 1 | 1 | 0 | 0 | 23 | 0 | 34 | 67.65 | ||||||||||||
行道树 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 27 | 28 | 96.43 | ||||||||||||
实测总和 | 50 | 50 | 50 | 30 | 20 | 30 | 30 | 30 | 290 | |||||||||||||
生产精度/% | 88 | 90 | 94 | 83.33 | 60 | 96.67 | 76.67 | 90 | 86.9* | 0.85** | ||||||||||||
BP神经网络 | 1~2年枸杞 | 48 | 6 | 2 | 2 | 0 | 1 | 4 | 0 | 63 | 76.19 | |||||||||||
3~6年枸杞 | 0 | 44 | 4 | 0 | 0 | 0 | 1 | 0 | 49 | 89.8 | ||||||||||||
7~8年枸杞 | 0 | 0 | 43 | 0 | 0 | 0 | 0 | 3 | 46 | 93.48 | ||||||||||||
城镇 | 0 | 0 | 0 | 27 | 0 | 3 | 2 | 0 | 32 | 84.38 | ||||||||||||
道路 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 18 | 100 | ||||||||||||
荒漠 | 2 | 0 | 0 | 1 | 2 | 25 | 1 | 0 | 31 | 80.65 | ||||||||||||
湿地 | 0 | 0 | 0 | 0 | 0 | 1 | 22 | 0 | 23 | 95.65 | ||||||||||||
行道树 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 27 | 28 | 96.43 | ||||||||||||
实测总和 | 50 | 50 | 50 | 30 | 20 | 30 | 30 | 30 | 290 | |||||||||||||
生产精度/% | 96 | 88 | 86 | 90 | 90 | 83.33 | 73.33 | 90 | 87.59* | 0.86** | ||||||||||||
最大似然法 | 1~2年枸杞 | 34 | 0 | 1 | 5 | 2 | 1 | 1 | 0 | 44 | 77.27 | |||||||||||
3~6年枸杞 | 4 | 49 | 4 | 1 | 0 | 0 | 0 | 1 | 59 | 83.05 | ||||||||||||
7~8年枸杞 | 0 | 1 | 38 | 0 | 0 | 0 | 0 | 3 | 42 | 90.48 | ||||||||||||
城镇 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 18 | 100 | ||||||||||||
道路 | 4 | 0 | 0 | 5 | 16 | 9 | 0 | 0 | 34 | 47.06 | ||||||||||||
荒漠 | 6 | 0 | 0 | 1 | 2 | 14 | 1 | 0 | 24 | 58.33 | ||||||||||||
湿地 | 2 | 0 | 1 | 0 | 0 | 6 | 28 | 0 | 37 | 75.68 | ||||||||||||
行道树 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 26 | 32 | 81.25 | ||||||||||||
实测总和 | 50 | 50 | 50 | 30 | 20 | 30 | 30 | 30 | 290 | |||||||||||||
生产精度/% | 68 | 98 | 76 | 60 | 80 | 46.67 | 93.33 | 86.67 | 76.9* | 0.73** |
分类方法 | 类型 (像元个数) | 地面真实类别(像元个数) | 用户 精度/% | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1~2年枸杞 | 3~6年枸杞 | 7~8年枸杞 | 城镇 | 道路 | 荒漠 | 湿地 | 行道树 | 总和 | ||||||||||||||
随机森林 | 1~2年枸杞 | 48 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 51 | 94.12 | |||||||||||
3~6年枸杞 | 0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 100 | ||||||||||||
7~8年枸杞 | 0 | 1 | 47 | 0 | 0 | 0 | 0 | 2 | 50 | 94 | ||||||||||||
城镇 | 0 | 0 | 0 | 27 | 0 | 1 | 0 | 0 | 28 | 96.43 | ||||||||||||
道路 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 18 | 100 | ||||||||||||
荒漠 | 2 | 0 | 0 | 1 | 2 | 28 | 2 | 0 | 35 | 80 | ||||||||||||
湿地 | 0 | 0 | 1 | 0 | 0 | 1 | 28 | 0 | 30 | 93.33 | ||||||||||||
行道树 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 28 | 30 | 93.33 | ||||||||||||
总和 | 50 | 50 | 50 | 30 | 20 | 30 | 30 | 30 | 290 | |||||||||||||
生产精度/% | 96 | 96 | 94 | 90 | 90 | 93.33 | 93.33 | 93.33 | 93.79* | 0.93** | ||||||||||||
Softmax | 1~2年枸杞 | 44 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 48 | 91.67 | |||||||||||
3~6年枸杞 | 1 | 43 | 0 | 1 | 0 | 0 | 0 | 0 | 45 | 95.56 | ||||||||||||
7~8年枸杞 | 0 | 2 | 45 | 0 | 0 | 0 | 0 | 2 | 51 | 88.24 | ||||||||||||
城镇 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 27 | 100 | ||||||||||||
道路 | 0 | 0 | 0 | 0 | 13 | 4 | 0 | 0 | 17 | 76.47 | ||||||||||||
荒漠 | 2 | 0 | 0 | 3 | 7 | 25 | 1 | 0 | 36 | 69.44 | ||||||||||||
湿地 | 3 | 4 | 2 | 0 | 0 | 1 | 28 | 0 | 37 | 75.68 | ||||||||||||
行道树 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 28 | 29 | 96.55 | ||||||||||||
实测总和 | 50 | 50 | 50 | 30 | 20 | 30 | 30 | 30 | 290 | |||||||||||||
生产精度/% | 88 | 86 | 90 | 83 | 65 | 83.33 | 93.33 | 93.33 | 86.55* | 0.84** | ||||||||||||
支持向量机 | 1~2年枸杞 | 44 | 0 | 1 | 1 | 5 | 1 | 6 | 0 | 58 | 75.86 | |||||||||||
3~6年枸杞 | 0 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 100 | ||||||||||||
7~8年枸杞 | 0 | 0 | 47 | 0 | 0 | 0 | 0 | 3 | 50 | 94 | ||||||||||||
城镇 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 25 | 100 | ||||||||||||
道路 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 12 | 100 | ||||||||||||
荒漠 | 2 | 0 | 0 | 3 | 3 | 29 | 1 | 0 | 38 | 76.32 | ||||||||||||
湿地 | 4 | 5 | 1 | 1 | 0 | 0 | 23 | 0 | 34 | 67.65 | ||||||||||||
行道树 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 27 | 28 | 96.43 | ||||||||||||
实测总和 | 50 | 50 | 50 | 30 | 20 | 30 | 30 | 30 | 290 | |||||||||||||
生产精度/% | 88 | 90 | 94 | 83.33 | 60 | 96.67 | 76.67 | 90 | 86.9* | 0.85** | ||||||||||||
BP神经网络 | 1~2年枸杞 | 48 | 6 | 2 | 2 | 0 | 1 | 4 | 0 | 63 | 76.19 | |||||||||||
3~6年枸杞 | 0 | 44 | 4 | 0 | 0 | 0 | 1 | 0 | 49 | 89.8 | ||||||||||||
7~8年枸杞 | 0 | 0 | 43 | 0 | 0 | 0 | 0 | 3 | 46 | 93.48 | ||||||||||||
城镇 | 0 | 0 | 0 | 27 | 0 | 3 | 2 | 0 | 32 | 84.38 | ||||||||||||
道路 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 18 | 100 | ||||||||||||
荒漠 | 2 | 0 | 0 | 1 | 2 | 25 | 1 | 0 | 31 | 80.65 | ||||||||||||
湿地 | 0 | 0 | 0 | 0 | 0 | 1 | 22 | 0 | 23 | 95.65 | ||||||||||||
行道树 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 27 | 28 | 96.43 | ||||||||||||
实测总和 | 50 | 50 | 50 | 30 | 20 | 30 | 30 | 30 | 290 | |||||||||||||
生产精度/% | 96 | 88 | 86 | 90 | 90 | 83.33 | 73.33 | 90 | 87.59* | 0.86** | ||||||||||||
最大似然法 | 1~2年枸杞 | 34 | 0 | 1 | 5 | 2 | 1 | 1 | 0 | 44 | 77.27 | |||||||||||
3~6年枸杞 | 4 | 49 | 4 | 1 | 0 | 0 | 0 | 1 | 59 | 83.05 | ||||||||||||
7~8年枸杞 | 0 | 1 | 38 | 0 | 0 | 0 | 0 | 3 | 42 | 90.48 | ||||||||||||
城镇 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 18 | 100 | ||||||||||||
道路 | 4 | 0 | 0 | 5 | 16 | 9 | 0 | 0 | 34 | 47.06 | ||||||||||||
荒漠 | 6 | 0 | 0 | 1 | 2 | 14 | 1 | 0 | 24 | 58.33 | ||||||||||||
湿地 | 2 | 0 | 1 | 0 | 0 | 6 | 28 | 0 | 37 | 75.68 | ||||||||||||
行道树 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 26 | 32 | 81.25 | ||||||||||||
实测总和 | 50 | 50 | 50 | 30 | 20 | 30 | 30 | 30 | 290 | |||||||||||||
生产精度/% | 68 | 98 | 76 | 60 | 80 | 46.67 | 93.33 | 86.67 | 76.9* | 0.73** |
[1] | 如克亚·加帕尔, 孙玉敬, 钟烈州 , 等. 枸杞植物化学成分及其生物活性的研究进展[J]. 中国食品学报, 2013,13(8):161-172. |
[2] | 朱时佳, 谢韶璟, 余秦胤 , 等. 边远地区农特产品供需失配问题研究——以青海枸杞为例[J]. 现代商贸工业, 2020,41(2):25-27. |
[3] | Chen Y S, Zhang X C, Wang X G , et al. Extraction of crop planting structure in seasons prone to waterlogging using Landsat8 OLI and MODIS data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(21):165-173. |
[4] | 王利民, 刘佳, 姚保民 , 等. 综合NDVI时序特征的冬小麦混合像元分解及面积估算[J]. 中国农学通报, 2019,35(27):23-33. |
[5] | 许青云, 杨贵军, 龙慧灵 , 等. 基于MODIS-NDVI多年时序数据的农作物种植识别[J]. 农业工程学报, 2014,30(11):134-144. |
[6] | 陈颖姝, 张晓春, 王修贵 , 等. 基于Landsat8OLI与MODIS数据的洪涝季节作物种植结构提取[J]. 农业工程学报, 2014,30(21):165-173. |
[7] | 王利民, 刘佳, 杨福刚 , 等. 基于GF-1卫星遥感的冬小麦面积早期识别[J]. 农业工程学报, 2015,31(11):194-201. |
[8] | 曾志康, 覃泽林, 黄启厅 , 等. 基于国产高时空分辨率卫星影像的作物种植信息提取研究[J]. 福建农业学报, 2017,32(5):560-567. |
[9] | 姬旭升, 李旭, 万泽福 , 等. 基于高空间分辨率卫星影像的新疆阿拉尔市棉花与枣树分类[J]. 中国农业科学, 2019,52(6):997-1008. |
[10] | 赵璐, 任红艳, 杨林生 . 基于高分二号遥感数据的农业阳光大棚提取[J]. 遥感技术与应用, 2019,34(3):677-684. |
[11] | 史飞飞, 高小红, 杨灵玉 , 等. 基于HJ-1A高光谱遥感数据的湟水流域典型农作物分类研究[J]. 遥感技术与应用, 2017,32(2):206-217. |
[12] | 赵丽娟 . 基于BP神经网络的遥感影像分类研究[D]. 东华理工大学, 2014. |
[13] | Dietterich T G . An Experimental CompARVIson of Three Methods for Constructing Ensembles of Decision Trees: Bagging,Boosting,and Randomization[J]. Machine Learning, 2000,40(2):139-157. |
[14] | 蒋怡, 黄平, 董秀春 , 等. 基于Softmax分类器的小春作物种植空间信息提取[J]. 西南农业学报, 2019,32(08):1880-1885,1967. |
[15] | 姚继营 . 数字遥感图像解译分类方法研究[D]. 包头:内蒙古科技大学, 2010. |
[16] | Congalton R G . A review of assessing the accuracy of classification of remotely sensed data[J]. Remote Sensing of Environment, 1991,37(1):35-46. |
[17] |
Richards J A . Classifier performance and map accuracy[J]. Remote Sensing of Environment, 1996,57(3):161-166.
doi: 10.1016/0034-4257(96)00038-7 URL |
[18] | 王利民, 刘佳, 高建孟 , 等. 基于HY-1C/CZI数据的冬小麦早期识别研究[J]. 中国农学通报, 2019,35(33):151-157. |
[19] | 李志鹏, 李正国, 刘珍环 , 等. 基于中分辨TM数据的水稻提取方法对比研究[J]. 中国农业资源与区划, 2014,35(01):27-33. |
[20] | 杨屹鹍, 蒋平安, 武红旗 , 等. 基于高分一号与Landsat 8卫星影像的库尔勒市香梨种植面积识别研究[J]. 山东农业科学, 2018,50(01):153-157. |
[21] | Breiman L . Bagging prediction[J]. Machine Learning, 1996,24. |
[22] | Gislason P O, J A Benediktsson, J R Sveinsson. Random Forests for land cover classification. Pattern recognition letters, 2006. 27(4):294-300. |
[23] | 马慧娟, 高小红, 谷晓天 . 随机森林方法支持的复杂地形区土地利用/土地覆被分类研究[J]. 地球信息科学学报, 2019,21(03):359-371. |
[24] | 杨蕙宇, 王征强, 白建军 , 等. 基于多特征提取与优选的冬小麦面积提取[J]. 陕西师范大学学报:自然科学版, 2020,48(1):40-49. |
[25] | 林卉, 邵聪颖, 李海涛 , 等. 高分辨率遥感影像5种面向对象分类方法对比研究[J]. 测绘通报, 2017(11):17-21. |
[26] | 李朝峰, 曾生根, 许磊 . 遥感图像智能处理. 北京: 电子工业出版社, 2007. |
[27] | 解毅, 张永清, 荀兰 , 等. 基于多源遥感数据融合和LSTM算法的作物分类研究[J]. 农业工程学报, 2019,35(15):129-137. |
[28] | 徐逸, 董轩妍, 王俊杰 . 4种机器学习模型反演太湖叶绿素a浓度的比较[J]. 水生态学杂志, 2019,40(4):48-57. |
[29] | 朱芳芳, 李仲勤, 杨树文 , 等. 特征分量的城市建筑物面向对象提取方法[J]. 测绘科学, 2020,45(1):84-91. |
[30] | 苏伟, 姜方方, 朱德海 , 等. 基于决策树和混合像元分解的玉米种植面积提取方法[J]. 农业机械学报, 2015,46(9):289-295,301. |
[31] | 王斌, 范冬林 . 深度学习在遥感影像分类与识别中的研究进展综述[J]. 测绘通报, 2019(02):99-102,136. |
[1] | SUN Yu, ZHANG Yongmei, WU Yujun. Recognition of Hemerocallis citrina Leaf Disease Based on PSO and SVM [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 135-140. |
[2] | SHEN Ju, XIN Pingping, YANG Qinan, WUYUN Zhula. Response of Shallow Soil Moisture Increment to Precipitation in Eastern Qaidam Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 54-61. |
[3] | YANG Lulu, QIN Huawei. Study on Peanut Appearance Quality Detection Based on Color and Texture Features [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 151-156. |
[4] | Lv Xiaoyan, Xue Lin, Jing Xia, Zhang Chao, Xu Haiqing, Zhu Qifa. SPAD Value Estimation of Tobacco Leaves Based on Hyperspectral Fractional Differential [J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 54-59. |
[5] | Lei Yuhong, Wang Fake, Xu Xuelian, Hou Yue, Yan Liangdong, Li Chunhui, Liang Zhiyong. Model Construction of the Relationship Between the Yield of Lycium barbarum and Meteorological Condition in Qaidam Area [J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 89-93. |
[6] | He Xinru, Wang Qinping, Qin Ken, Dai Guoli, Zhou Jun, Zhao Ruiqiu. Photosynthetic Characteristics and Light Response Model Fitting of Wolfberry [J]. Chinese Agricultural Science Bulletin, 2020, 36(28): 57-62. |
[7] | Yan Liangdong, Zhao Mengfan, Liang Zhiyong, Lei Yuhong, Yang Yinsheng. Agrometeorological Observation on Lycium barbarum L. in Qaidam: Method and Standard Establishment [J]. Chinese Agricultural Science Bulletin, 2020, 36(15): 81-86. |
[8] | Wang Fake, Lei Yuhong, Du Zhanliang, Cai Yuqin. Climate Change Affects Major Crops’ Yield in Qaidam Basin [J]. Chinese Agricultural Science Bulletin, 2020, 36(14): 107-112. |
[9] | 雒维萍,雷玉红, and . Lycium barbarum L.: The Adaptability in Qaidam Alpine Area and the Relationships with Meteorological Factors [J]. Chinese Agricultural Science Bulletin, 2019, 35(31): 83-88. |
[10] | . Rapid and Nondestructive Identification of Wheat Varieties with Multispectral Imaging Technology [J]. Chinese Agricultural Science Bulletin, 2019, 35(15): 14-19. |
[11] | . Prediction of Tobacco Yield in Shaoyang Based on Principal Component Analysis and SVR [J]. Chinese Agricultural Science Bulletin, 2019, 35(13): 152-156. |
[12] | 李云翔,赵 营,尹志荣,刘晓彤,罗健航 and 张学军. Primary exploration of N, P and K uptake in different organs in wolfberry tree and its rational application rates [J]. Chinese Agricultural Science Bulletin, 2018, 34(28): 61-66. |
[13] | . Sunshine Hours Variation Characteristics and Influencing Factors in Qaidam Basin During 1961-2013 [J]. Chinese Agricultural Science Bulletin, 2017, 33(2): 106-114. |
[14] | 沈菊,,辛萍萍 and 马艳. Variation Characteristics of Surface Temperature in Qaidam Basin 1980-2015 [J]. Chinese Agricultural Science Bulletin, 2016, 32(35): 58-64. |
[15] | Shen Ju,Zhang Caiyue,Liu Jinqing and Ma Yan. Temperature Variation Characteristics in Qaidam Basin in Recent 35 Years [J]. Chinese Agricultural Science Bulletin, 2016, 32(34): 159-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||