[1] 王永胜,王景,段静雅,等. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报,2002,28(2):235-239. [2] 赵芳明, 刘桂富, 朱海涛, 等. 用单片段代换系对不同时期水稻分蘖数QTL的非条件和条件定位[J]. 中国农业科学,2008,41(2):322-330. [3] 李万昌, 王俊伟, 余娇娇.水稻分蘖基因的研究概况[J]. 作物杂志,2012, 3:19-22. [4] Xu Y B, Shen Z T. Diallel analysis of tiller number at different growth stages in rice(Oryza sative L.) [J]. Theoretical and Applied Genetics, 1991, 83(2): 243-249. [5] Yan J Q,Zhu J,He C X,et al. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 1998, 97(1): 267-274. [6] Wu W R, Li W M, Tang D Z, et al.Time-related mapping of quantitative trait loci underlying tillering number in rice[J]. Genetics, 1999, 151(1) : 297-303. [7] 任翔,翁清妹,祝莉莉,等. 水稻分蘖能力QTL 的定位[J].武汉大学学报:理学版,2003,49(4):533-537. [7] Fujita D, Ebron L A, Araki E, et al.SSFine mapping of a gene for low-tiller number,SLtn, in japonica rice (Oryza sativaSL.) variety Aikawa[J].SSTheoretical and Applied Genetics,S2010,S120(6): 1233-1240. [8] Ariyaratne M, Takamure I, Kato K, et al.SSShoot branching control by reduced culm number 4 in rice (Oryza sativaSL.)[J].SSSPlant Science,S2009,S176(6): 744-748. [9] Zhang B S, Tian F, Tan L B,SSet al. Characterization of a novelShigh-tillering dwarf 3Smutant in rice[J].SJournal of genetics and genomics,S2011,S38(9): 411-418.SS [10] 高振宇,刘晓辉,郭龙彪,等.SS一新的水稻多蘖矮秆突变体tddl(t)的分离及基因的精细定位[J].SS科学通报,2009,54(9): 1238-1243. [11] 徐建龙,李春寿,王俊敏,等. 空间环境诱发水稻多蘖矮秆突变体的筛选与鉴定[J].SS核农学报,2003,17(2):90-94. [12] Li X Y, Qian Q, Fu Z M,SSet al.SSControl of tillering in rice[J].SNature, 2003, 422(6932): 618-621. [13] Koumoto T, Shimada H, Kusano H,SSet al. Rice monoculm mutationSmoc2, which inhibits outgrowth of the second tillers, is ascribed to lack of a fructose-1,6-bisphosphatase[J]. Plant Biotechnology, 2013, 30(1): 47-56. [15] Lu Z F, Shao G N, Xiong J S,SSet al. MONOCULM 3, an Ortholog ofSWUSCHELSin Rice, Is Required for Tiller Bud Formation[J]. Journal of genetics and genomics,S2015,S42(2): 71-78. [16] Ishikawa S, Maekawa M, Arite T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant and Cell Physiology,S2005,S46(1): 79-86. [17] Arite T, Iwata H, Ohshima K,SSet al.SSDWARF10, anSRMS1/MAX4/DAD1Sortholog, controls lateral bud outgrowth in rice[J].SSThe Plant Journal,S2007,S51(6): 1019-1029. [18] Lin H, Wang R X, Qian Q,Set al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth[J]. The Plant Cell,S2009,S21(5): 1512-1525. [19] Jiang L, Liu X, Xiong G S, et al.SDWARF 53 acts as a repressor of strigolactone signalling in rice[J].SNature,S2013,S504(7480): 401-405. [20] Tong H N, Jin Y, Liu W B, et al.SDWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice[J].SThe Plant Journal,S2009,S58(5): 803-816. [21] Liu SK, Liu L L, Ren Y L, et al. Dwarf and tiller-enhancing 1Sregulates growth and development by influencing boron uptake in boron limited conditions in rice[J]. Plant Science,S2015,S236: 18-28. [22] Zou J H, Zhang S Y, Zhang W P, et al.SThe riceSHIGH-TILLERING DWARF1Sencoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J].SThe Plant Journal,S2006,S48(5): 687-698. [23]SLiu W Z, Wu C, Fu Y P, et al.SSIdentification and characterization ofSHTD2: a novel gene negatively regulating tiller bud outgrowth in rice[J]. Planta,S2009,S230(4): 649-658. [24] Takeda ST, Suwa Y, Suzuki M, et al.STheSOsTB1Sgene negatively regulates lateral branching in rice[J].SSThe Plant Journal,S2003,S33(3): 513-520. [25] Wang W F, Li G, Zhao J, et al.SDWARF TILLER1, a WUSCHEL-Related Homeobox Transcription Factor, Is Required for Tiller Growth in Rice[J].SSPLoS Genetics,S2014,S10(3): e1004154. [26] Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation: Version II [J]. Plant Mol Biol Rep, 1983, 1(4): 19-21. [27] Shen Y J, Jiang H, Jin J P, et al. Development of genome-wide DNA Polymorphism database for map-based cloning of rice genes[J]. Plant Physiol, 2004, 135(3): 1198-1205. [28] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proc Natl Acad Sci USA, 1991, 88(21): 9828-9832. [29] Lander E S, Green P, Abrahamson J, et al. Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J]. Genomics, 1987, 1(2): 174-181.
|