[1]赵英时. 遥感应用分析原理与方法 [M]. 科学出版社, 2013. [2]Li W, Niu Z, Chen H, et al. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system [J]. Ecological Indicators, 2016, 67:637-648. [3]Campos-Taberner M, García-Haro F J, Camps-Valls G, et al. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring [J]. Remote Sensing of Environment, 2016, 187:102-118. [4]Soudani K, Fran?ois C, Maire G L, et al. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands [J]. Remote Sensing of Environment, 2006, 102(1):161-175. [5]Yue J, Yang G, Feng H. Comparative of remote sensing estimation models of winter wheat biomass based on random forest algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016. [6]付元元, 王纪华, 杨贵军,等. 应用波段深度分析和偏最小二乘回归的冬小麦生物量高光谱估算 [J]. 光谱学与光谱分析, 2013, 32(5):1315-1319. [7]Yue J, Feng H, Yang G, et al. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy [J]. Remote Sensing, 2018, 10(1):66. [8]Marshall M, Thenkabail P. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation [J]. Isprs Journal of Photogrammetry Remote Sensing, 2015, 108:205-218. [9]Jin X, Yang G, Xu X, et al. Combined Multi-Temporal Optical and Radar Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data [J]. Remote Sensing, 2015, 7(10). [10]任建强, 吴尚蓉, 刘斌,等. 基于Hyperion高光谱影像的冬小麦地上干生物量反演 [J].农业机械学报,2018,49(04):199-211. [11]Cho M A, Skidmore A, Corsi F, et al. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression [J]. International Journal of Applied Earth Observation Geoinformation, 2007, 9(4):414-424. [12]Yue J, Yang G, Li C, et al. Estimation of Winter Wheat Above-ground Biomass Using Unmanned Aerial Vehicle-based Snapshot Hyperspectral Sensor and Crop Height Improved Models [J]. Remote Sensing, 2017, 9(7):708. [13]陆国政, 杨贵军, 赵晓庆,等. 基于多载荷无人机遥感的大豆地上鲜生物量反演 [J]. 大豆科学, 2017, 36(1):41-50. [14]申鑫,曹林,佘光辉. 高光谱与高空间分辨率遥感数据的亚热带森林生物量反演 [J].遥感学报, 2016, 20(6):1446-1460. [15]夏浪, 张瑞瑞, 陈立平,等. 基于无人机高光谱影像的地表植被生物量反演波段优选 [J].电子测量技术, 2018, 41(09):87-90. [16]罗一帆, 郭振飞, 朱振宇,等. 近红外光谱测定茶叶中茶多酚和茶多糖的人工神经网络模型研究[J]. 光谱学与光谱分析, 2005, 25(8):1230-1233. [17]宋开山, 张柏, 于磊,等. 玉米地上鲜生物量的高光谱遥感估算模型研究 [J]. 农业系统科学与综合研究, 2005, 21(1):65-67. [18]RITCHIE S W, HANAWAY J J, BENSON G O. How a corn plant develops[R]. Special Report 48, USA: Iowa State University, 1997. [19]陈鹏飞, 李刚, 石雅娇,等. 一款无人机高光谱传感器的验证及其在玉米叶面积指数反演中的应用 [J]. 中国农业科学, 2018, 51(8):1464-1474. [20]Hornik K, Stinchcombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks [J]. Neural Networks, 1990, 3(5):551-560. [21]Farifteh J, Meer F V D, Atzberger C, et al. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN) [J]. Remote Sensing of Environment, 2007, 110(1):59-78. [22]戚德虎, 康继昌. BP神经网络的设计 [J]. 计算机工程与设计, 1998(2):48-50. [23]Huang W, Foo S. Neural network modeling of salinity variation in Apalachicola River [J]. Water Research, 2002, 36(1):356-362. [24]张立明. 人工神经网络的模型及其应用 [M]. 复旦大学出版社, 1993. [25]王文成. 神经网络及其在汽车工程中的应用 [M]. 北京理工大学出版社, 1998. [26]田明璐, 班松涛, 常庆瑞,等. 基于低空无人机成像光谱仪影像估算棉花叶面积指数 [J]. 农业工程学报, 2016, 32(21):102-108. [27]Delegido J, Verrelst J, Meza C M, et al. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems [J]. European Journal of Agronomy, 2013, 46(46):42-52. [28]Rouse J W. Monitoring vegetation systems in the great plains with ERTS [J]. Nasa Special Publication, 1974, 351:309. [29]Pearson R L, Miller L D. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie [C]// Remote Sensing of Environment, VIII. Remote Sensing of Environment, VIII, 1972:7-12. [30]Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density [J]. Remote Sensing of Environment, 2001, 76(2):156-172. [31]Gitelson A A, Vi?a A, Ciganda V, et al. Remote estimation of canopy chlorophyll content in crops [J]. Geophysical Research Letters, 2005, 32(8):93-114. [32]Sims D A, Luo H, Hastings S, et al. Parallel adjustments in vegetation greenness and ecosystem CO 2, exchange in response to drought in a Southern California chaparral ecosystem [J]. Remote Sensing of Environment, 2006, 103(3):289-303. [33]Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS [J]. Remote Sensing of Environment, 1996, 58(3):289-298. [34]Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1):195-213. [35]Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sens Envrion, 1994, 48(2):119-126. [36]陈鹏飞, Nicolas, Tremblay,等. 估测作物冠层生物量的新植被指数的研究 [J]. 光谱学与光谱分析, 2010, 30(2):512-517. [37]Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices ☆[J]. Remote Sensing of Environment, 1996, 55(2):95-107. [38]Dash J, Curran P J. The MERIS terrestrial chlorophyll index [J]. International Journal of Remote Sensing,2004, 25(23):5403-5413. [39]孙红, 李民赞, 张彦娥,等. 不同施氮水平下玉米冠层光谱反射特征分析 [J]. 光谱学与光谱分析, 2010, 30(3):715-719. [40]贺佳, 刘冰峰, 郭燕,等. 冬小麦生物量高光谱遥感监测模型研究 [J]. 植物营养与肥料学报, 2017, 23(2):313-323.
|