Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (29): 15-24.doi: 10.11924/j.issn.1000-6850.casb20190800546
Previous Articles Next Articles
Yang Yang1(), Ma Yihao2, Wang Runyuan1, Qi Yue1, Zhang Kai1
Received:
2019-08-16
Revised:
2020-03-19
Online:
2020-10-15
Published:
2020-10-16
CLC Number:
Yang Yang, Ma Yihao, Wang Runyuan, Qi Yue, Zhang Kai. Simulation of Light Response Curve of Spring Wheat in Semi-arid Rainfed Area Under Drought Stress[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 15-24.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20190800546
光响应模型 | 处理 | 初始量子效率 | 最大净光合速 | 光饱和点 | 光补偿点 | 暗呼吸速率 |
---|---|---|---|---|---|---|
实测值 | CK | — | ≈13.82 | ≈1900 | ≈27 | ≈1.34 |
T1 | — | ≈16.92 | ≈2100 | ≈19 | ≈0.95 | |
T2 | — | ≈18.00 | ≈2100 | ≈20 | ≈1.01 | |
T3 | — | ≈5.93 | ≈1500 | ≈31 | ≈1.11 | |
直角双曲线模型 | CK | 0.0466 | 17.3251 | 647.27 | 25.3003 | 1.103 |
T1 | 0.0581 | 21.8965 | 636.84 | 21.4302 | 1.1772 | |
T2 | 0.0659 | 22.9871 | 667.6 | 21.2007 | 1.317 | |
T3 | 0.0689 | 10 | 487.39 | 57.0902 | 2.8217 | |
非直角双曲线模型 | CK | 0.0465 | 17.3239 | 674.187 | 25.278 | 1.1017 |
T1 | 0.0452 | 20.0765 | 582.635 | 18.7252 | 0.8289 | |
T2 | 0.053 | 21.397 | 619.96 | 19.4075 | 1.0015 | |
T3 | 0.0301 | 7.3137 | 472.76 | 33.7707 | 0.9415 | |
指数模型 | CK | 0.0305 | 13.2997 | 1011.53 | 35.4721 | 1.0392 |
T1 | 0.0402 | 16.8747 | 960.71 | 26.5826 | 1.0366 | |
T2 | 0.0449 | 17.794 | 912.08 | 23.8026 | 1.0384 | |
T3 | 0.0227 | 5.7391 | 612.24 | 55.9197 | 1.1377 | |
直角双曲线修正模型 | CK | 0.0466 | 16.2217 | 2143.4297 | 25.2988 | 1.1029 |
T1 | 0.0505 | 16.9527 | 2278.7092 | 19.311 | 0.9384 | |
T2 | 0.0591 | 18.0902 | 2485.6595 | 19.7813 | 1.1173 | |
T3 | 0.0328 | 5.7968 | 1552.8482 | 32.7074 | 0.9578 |
光响应模型 | 处理 | 初始量子效率 | 最大净光合速 | 光饱和点 | 光补偿点 | 暗呼吸速率 |
---|---|---|---|---|---|---|
实测值 | CK | — | ≈13.82 | ≈1900 | ≈27 | ≈1.34 |
T1 | — | ≈16.92 | ≈2100 | ≈19 | ≈0.95 | |
T2 | — | ≈18.00 | ≈2100 | ≈20 | ≈1.01 | |
T3 | — | ≈5.93 | ≈1500 | ≈31 | ≈1.11 | |
直角双曲线模型 | CK | 0.0466 | 17.3251 | 647.27 | 25.3003 | 1.103 |
T1 | 0.0581 | 21.8965 | 636.84 | 21.4302 | 1.1772 | |
T2 | 0.0659 | 22.9871 | 667.6 | 21.2007 | 1.317 | |
T3 | 0.0689 | 10 | 487.39 | 57.0902 | 2.8217 | |
非直角双曲线模型 | CK | 0.0465 | 17.3239 | 674.187 | 25.278 | 1.1017 |
T1 | 0.0452 | 20.0765 | 582.635 | 18.7252 | 0.8289 | |
T2 | 0.053 | 21.397 | 619.96 | 19.4075 | 1.0015 | |
T3 | 0.0301 | 7.3137 | 472.76 | 33.7707 | 0.9415 | |
指数模型 | CK | 0.0305 | 13.2997 | 1011.53 | 35.4721 | 1.0392 |
T1 | 0.0402 | 16.8747 | 960.71 | 26.5826 | 1.0366 | |
T2 | 0.0449 | 17.794 | 912.08 | 23.8026 | 1.0384 | |
T3 | 0.0227 | 5.7391 | 612.24 | 55.9197 | 1.1377 | |
直角双曲线修正模型 | CK | 0.0466 | 16.2217 | 2143.4297 | 25.2988 | 1.1029 |
T1 | 0.0505 | 16.9527 | 2278.7092 | 19.311 | 0.9384 | |
T2 | 0.0591 | 18.0902 | 2485.6595 | 19.7813 | 1.1173 | |
T3 | 0.0328 | 5.7968 | 1552.8482 | 32.7074 | 0.9578 |
光响应模型 | 处理 | 相对误差 | 平均值 | |||
---|---|---|---|---|---|---|
最大净 光合速 | 光饱和点 | 光补偿点 | 暗呼吸速率 | |||
直角双曲线 模型 | CK | 0.254 | 0.645 | 0.063 | 0.177 | 0.293 |
T1 | 0.294 | 0.697 | 0.128 | 0.239 | 0.347 | |
T2 | 0.277 | 0.682 | 0.06 | 0.304 | 0.388 | |
T3 | 0.686 | 0.675 | 0.842 | 0.542 | 0.946 | |
平均值 | 0.378 | 0.675 | 0.273 | 0.566 | 0.473 | |
非直角双曲线模型 | CK | 0.254 | 0.645 | 0.064 | 0.178 | 0.293 |
T1 | 0.187 | 0.723 | 0.014 | 0.127 | 0.27 | |
T2 | 0.189 | 0.705 | 0.03 | 0.008 | 0.24 | |
T3 | 0.233 | 0.685 | 0.089 | 0.152 | 0.3 | |
平均值 | 0.216 | 0.689 | 0.049 | 0.116 | 0.268 | |
指数模型 | CK | 0.038 | 0.468 | 0.314 | 0.224 | 0.259 |
T1 | 0.003 | 0.543 | 0.399 | 0.091 | 0.256 | |
T2 | 0.011 | 0.566 | 0.19 | 0.028 | 0.196 | |
T3 | 0.032 | 0.592 | 0.804 | 0.025 | 0.361 | |
平均值 | 0.021 | 0.542 | 0.427 | 0.092 | 0.271 | |
直角双曲线 修正模型 | CK | 0.174 | 0.128 | 0.063 | 0.177 | 0.136 |
T1 | 0.002 | 0.085 | 0.016 | 0.012 | 0.029 | |
T2 | 0.005 | 0.184 | 0.011 | 0.106 | 0.077 | |
T3 | 0.022 | 0.035 | 0.055 | 0.137 | 0.062 | |
平均值 | 0.051 | 0.108 | 0.036 | 0.108 | 0.074 |
光响应模型 | 处理 | 相对误差 | 平均值 | |||
---|---|---|---|---|---|---|
最大净 光合速 | 光饱和点 | 光补偿点 | 暗呼吸速率 | |||
直角双曲线 模型 | CK | 0.254 | 0.645 | 0.063 | 0.177 | 0.293 |
T1 | 0.294 | 0.697 | 0.128 | 0.239 | 0.347 | |
T2 | 0.277 | 0.682 | 0.06 | 0.304 | 0.388 | |
T3 | 0.686 | 0.675 | 0.842 | 0.542 | 0.946 | |
平均值 | 0.378 | 0.675 | 0.273 | 0.566 | 0.473 | |
非直角双曲线模型 | CK | 0.254 | 0.645 | 0.064 | 0.178 | 0.293 |
T1 | 0.187 | 0.723 | 0.014 | 0.127 | 0.27 | |
T2 | 0.189 | 0.705 | 0.03 | 0.008 | 0.24 | |
T3 | 0.233 | 0.685 | 0.089 | 0.152 | 0.3 | |
平均值 | 0.216 | 0.689 | 0.049 | 0.116 | 0.268 | |
指数模型 | CK | 0.038 | 0.468 | 0.314 | 0.224 | 0.259 |
T1 | 0.003 | 0.543 | 0.399 | 0.091 | 0.256 | |
T2 | 0.011 | 0.566 | 0.19 | 0.028 | 0.196 | |
T3 | 0.032 | 0.592 | 0.804 | 0.025 | 0.361 | |
平均值 | 0.021 | 0.542 | 0.427 | 0.092 | 0.271 | |
直角双曲线 修正模型 | CK | 0.174 | 0.128 | 0.063 | 0.177 | 0.136 |
T1 | 0.002 | 0.085 | 0.016 | 0.012 | 0.029 | |
T2 | 0.005 | 0.184 | 0.011 | 0.106 | 0.077 | |
T3 | 0.022 | 0.035 | 0.055 | 0.137 | 0.062 | |
平均值 | 0.051 | 0.108 | 0.036 | 0.108 | 0.074 |
标准误差 | CK | T1 | T2 | T3 |
---|---|---|---|---|
直角双曲线模型 | 0.1774 | 0.5750 | 0.1970 | 0.6980 |
非直角双曲线模型 | 0.1774 | 0.4556 | 0.0613 | 0.1654 |
指数模型 | 0.4534 | 0.4265 | 0.2568 | 0.1597 |
直角双曲线修正模型 | 0.1774 | 0.4757 | 0.0632 | 0.1080 |
标准误差 | CK | T1 | T2 | T3 |
---|---|---|---|---|
直角双曲线模型 | 0.1774 | 0.5750 | 0.1970 | 0.6980 |
非直角双曲线模型 | 0.1774 | 0.4556 | 0.0613 | 0.1654 |
指数模型 | 0.4534 | 0.4265 | 0.2568 | 0.1597 |
直角双曲线修正模型 | 0.1774 | 0.4757 | 0.0632 | 0.1080 |
[1] | 张凯, 冯起, 王润元, 等. CO2浓度升高对春小麦灌浆特性及产量的影响[J]. 中国农学通报, 2014,30(3):189-195. |
[2] | 杨阳, 申双和, 王润元, 等. 干旱胁迫对半干旱雨养区春小麦生长发育及产量的影响[J]. 江苏农业科学, 2019,47(3):82-85. |
[3] | 张伟杨, 钱希旸, 李银银, 等. 土壤干旱对小麦生理性状和产量的影响[J]. 麦类作物学报, 2016,36(4):491-500. |
[4] | 谢静静, 王笑, 蔡剑, 等. 苗期外源脱落酸和茉莉酸缓减小麦花后干旱胁迫的效应及其生理机制[J]. 麦类作物学报, 2018,38(2):221-229. |
[5] | 任丽雯, 马兴祥. 石羊河流域水分胁迫对玉米生长发育指标和产量的影响[J]. 干旱气象, 2014,32(5):760-764. |
[6] | 张磊, 吕金印, 贾少磊. 水分亏缺对小麦穗部光合特性及花前14C-同化物分配的影响[J]. 作物学报, 2013,39(8):1514-1519. |
[7] |
Sharp R E, Matthews M A, Boyer J B. Kok effect and the quan-tum yield of photosynjournal[J]. Plant Physiology, 1984,75:95-101.
doi: 10.1104/pp.75.1.95 URL pmid: 16663610 |
[8] | Ye Z P. A new model for relationship between irradiance and the rate of photosynjournal in Oryza sativa[J]. hotosynthetica, 2007,45:637-640. |
[9] | Baly E C C. The kinetics of photosynjournal[J]. Proceedings of the Royal Society of London Series B(Biological Sciences). 1935,117:218-239. |
[10] | 孙旭生, 林琪, 赵长星, 等. 施氮量对超高产冬小麦灌浆期旗叶光响应曲线的影响[J]. 生态学报, 2009,29(3):1428-1437. |
[11] | Prado CHBA, Moraes JAPV. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition[J]. Photosynthetica, 1997,33, 103-112. |
[12] | 钟楚, 朱勇. 几种光合作用光响应模型对烟草的适用性分析[J]. 中国农业气象, 2013,34(1):74-80. |
[13] | Thornley J H M. Mathematical Models in Plant Physiology[M]. London: Academic Press, 1976, 86-110. |
[14] | 于艳梅, 徐俊增, 彭世彰, 等. 不同水分条件下水稻光合作用的光响应模型的比较[J]. 节水灌溉, 2012(10):30-33. |
[15] | Larocque G R. Coupling a detailed photosynthetic model with foliage distribution and light attenuation functions to compute daily gross photosynjournal in sugar maple (Acer saccharurn Marsh.) stands[J]. Ecological modelling, 2002,148(3):213-232. |
[16] | 刘建栋, 于强, 金之庆, 等. 冬小麦叶片光合作用农业气象数学模型研究[J]. 中国农业气象, 2003,24(1):22-25. |
[17] | 闫小红, 尹建华, 段世华, 等. 四种水稻品种的光合光响应曲线及其模型拟合[J]. 生态学杂志, 2013,32(3):604-610. |
[18] | 周玉霞, 巨天珍, 王引弟, 等. 4种光响应曲线模型对3种高寒草甸植物的实用性分析[J]. 草地学报, 2018,26(2):488-496. |
[19] | 杨世琼, 杨再强, 蔡霞, 等. 高温高湿胁迫下设施番茄光响应曲线的拟合[J]. 生态学杂志, 2018,37(7):2003-2012. |
[20] | 王海珍, 韩路, 徐雅丽, 等. 干旱胁迫下胡杨光合光响应过程模拟与模型比较[J]. 生态学报, 2017,37(7):2315-2324. |
[21] |
Lewis J D, Olsyzk D, Tingey D T. Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature[J]. Tree physiology, 1999,19:243-252.
URL pmid: 12651567 |
[22] | 叶子飘, 于强. 光合作用光响应模型的比较[J]. 植物生态学报, 2008,32(6):1356-1361. |
[23] | 刘丽平, 欧阳竹, 武兰芳, 等. 阶段性干旱及复水对小麦光合特性和产量的影响[J]. 生态学杂志, 2012,31(11):2797-2803. |
[24] | 谭晓红, 彭祚登, 贾忠奎, 等. 不同刺槐品种光合光响应曲线的温度效应研究[J]. 北京林业大学学报, 2010,32(2):64-68. |
[25] | Evans J R, Jakobsen I, Ogren E. Photosynthetic light-response curves.2. Gradients of light absorption and photosynthetic capacity[J]. Planta, 1993,189:191-200. |
[26] |
Yu Q, Zhang Y Q, Liu Y F, et al. Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes[J]. Annals of Botany, 2004,93:435-441.
doi: 10.1093/aob/mch023 URL pmid: 14980969 |
[27] | Walker D A, Jarvis G D, Leverenz J, et al. Automated measurement of leaf photo-synthetic O2 evolution as a function of photon flux density[J]. Philosophical Transactions of the Royal Society London, 1989,323(1216):313-326. |
[28] |
Richardson A D, Berlyn G P. Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting[J]. Tree Physiology, 2002,22:499-506.
doi: 10.1093/treephys/22.7.499 URL |
[29] | 王照兰, 杨持, 杜建材, 等. 不同生态型扁蓿豆光合特性和光适应能力[J]. 生态学杂志, 2009,28(6):1035-1040. |
[30] |
Ye Z P, Yu Q. A coupled model of stomatal conductance and photosynjournal for winter wheat[J]. Photosynthetica, 2008,46(4):637-640.
doi: 10.1007/s11099-008-0110-0 URL |
[31] | 张中峰, 黄玉清, 莫凌, 等. 岩溶植物光合-光响应曲线的两种拟合模型比较[J]. 武汉植物学研究, 2009,27(3):340-344. |
[32] | 曹雪丹, 李文华, 鲁周民, 等. 北缘地区枇杷春季光合特性研究[J]. 西北林学院学报, 2008,23(6):33-37. |
[33] | 王满莲, 冯玉龙, 李新. 紫茎泽兰和飞机草的形态和光合特性对磷营养的响应[J]. 应用生态学报, 2006,17(4):602-606. |
[34] |
叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报, 2010,34(6):727-740.
doi: 10.3773/j.issn.1005-264x.2010.06.012 URL |
[35] | 朱永宁, 张玉书, 纪瑞鹏, 等. 干旱胁迫下3种玉米光响应曲线模型的比较[J]. 沈阳农业大学学报, 2012,43(1):3-7. |
[1] | GU Shujie, QIAN Zhenfeng, LOU Yongming, SHEN Qingqing, PU Fengya, ZENG Dan, MA Hao, HE Lilian, LI Fusheng. Physiological Effects of Inoculated Endophytes on Sugarcane Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 42-47. |
[2] | SHI Yang, YIN Xilong, LI Wangsheng, XING Wang. PEG Simulated Drought Stress: Effects on Morphological Indices of Drought-tolerant and Drought-sensitive Sugar Beet Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 45-51. |
[3] | LI Wangsheng, WANG Xueqian, YIN Xilong, SHI Yang, XING Wang. Drought Resistance of Sugar Beet Seedling: Identification and Index Screening [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 17-23. |
[4] | YIN Shanshan, ZHOU Guoyan, GU Bowen, WU Chuncheng, YAN Liying, XIE Yang. Effects of Melatonin Priming on Physiological Characteristics of Cucumber Seedlings Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 30-36. |
[5] | ZHANG Ruijiu, MA Hui, JI Lijie, REN Dezhi, LI Shuangdong, ZHANG Yaohui, WANG Lihong. Effects of Drought Stress on Growth and Physiological and Biochemical Indexes of Potato Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 34-39. |
[6] | Zheng Zhiyin, Wang Fang. Effects of Drought Stress on Physiological Characteristics and Anatomical Structure of Potato [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 14-24. |
[7] | Liu Xiaozhou, Guo Haoxuan, Zhuo Dinglong, Deng Yanwen, Zeng Feng. Effects of Drought and Rewatering on Photosynthesis and Chlorophyll Fluorescence of Hedychium coronarium [J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 84-89. |
[8] | He Jiaqi, Yang Weijun, Jia Yonghong, Li Yonghao, Xing Dongjian, Hui Chao, Gao Wencui. Effect of Reducing Phosphate Fertilizer and Applying Biochar on Phosphorus Utilization and Yield of Spring Wheat in Northern Xinjiang [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 13-19. |
[9] | Jiang Lulu, Yu Kun, Liu Dongdong, Wang Junwu, Bao Xingcheng, Zheng Zhong. Effects of Drought Stress on Physiological Characteristics of Fig Leaves [J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 62-67. |
[10] | Tian Xin, Zhong Cheng, Luo Huan, Li Xuepiao. Photosynthetic Characteristics and Chromosome Karyotypes of Two Wild Soybean Varieties: Comparison at Different Growth Stages [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 32-38. |
[11] | Hou Linxin, Lv Qiang, Huang Ming, Jiao Nianyuan, Yin Fei, Liu Ling, Lv Meng, Fu Guozhan. SA Priming of Maize Seeds at Different Temperature Under Drought Stress: Effects on Seed Germination and Seedling Physiological Characteristics [J]. Chinese Agricultural Science Bulletin, 2021, 37(19): 13-22. |
[12] | Qin Fang, Shi Yancai, Qin Huizhen, Zou Rong, Jiang Yunsheng, Xiong Zhongchen. Comparative Study on Physiological Characteristics of Three Sophora japonica ‘Jinhuai’ Varieties [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 38-43. |
[13] | Wang Yihao, Li Shichang, Liu Chunlu, Zhao Yanli, Zheng Guowei, Xu Furong. Research on the Photosynthesis Ability of Pairs polyphylla var. yunnanensis from Different Areas [J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 59-64. |
[14] | Wang Jinghong, Chen Ai, Zhang Wen, Zhao Yi, Tian Jingyao, Wang Zhensheng, Xu Gudan, Lin Jixiang. Rooting Agent (GGR-6): Effects on the Response of Festuca rubra and Poa pratensis to Drought Stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(15): 47-54. |
[15] | Lei Jianfeng, Su Lili, He Yunjian, Zhou Guiling, Dai Peihong. Quality Characters of Wheat Varieties in Spring Series: Analysis and Evaluation [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 9-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||