Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (22): 143-150.doi: 10.11924/j.issn.1000-6850.casb2020-0683
Special Issue: 现代农业发展与乡村振兴; 棉花
Previous Articles Next Articles
Ji Weishuai1(), Chen Hongyan1(
), Wang Shuting1, Zhang Yuting2
Received:
2020-11-18
Revised:
2020-12-18
Online:
2021-08-05
Published:
2021-08-26
Contact:
Chen Hongyan
E-mail:231753728@qq.com;chenhy@sdau.edu.cn
CLC Number:
Ji Weishuai, Chen Hongyan, Wang Shuting, Zhang Yuting. Modeling Method of Cotton Leaves SPAD at Flowering and Boll Stage in North China Plain Based on UAV Multi-Spectrum[J]. Chinese Agricultural Science Bulletin, 2021, 37(22): 143-150.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0683
序号 | 光谱指数 | 相关系数 | 序号 | 光谱指数 | 相关系数 | 序号 | 光谱指数 | 相关系数 |
---|---|---|---|---|---|---|---|---|
1 | | 0.7252** | 10 | | -0.5523** | 20 | | 0.3071* |
2 | | -0.7124** | 11 | | 0.3197* | 21 | | -0.7091** |
3 | | -0.7279** | 12 | | 0.3027* | 22 | | -0.7059** |
4 | | -0.1359 | 13 | | 0.1231 | 23 | | 0.3068* |
5 | | 0.7645** | 14 | | -0.81** | 24 | | 0.0796 |
6 | | 0.1457 | 15 | | 0.5745 | 25 | | 0.1323 |
7 | | -0.5937* | 16 | | 0.7091** | 26 | | -0.5311** |
8 | | -0.0966 | 17 | | -0.7995** | 27 | | 0.1808* |
9 | | -0.6991** | 18 | | -0.7254** | |||
10 | | -0.5523** | 19 | | 0.1249 |
序号 | 光谱指数 | 相关系数 | 序号 | 光谱指数 | 相关系数 | 序号 | 光谱指数 | 相关系数 |
---|---|---|---|---|---|---|---|---|
1 | | 0.7252** | 10 | | -0.5523** | 20 | | 0.3071* |
2 | | -0.7124** | 11 | | 0.3197* | 21 | | -0.7091** |
3 | | -0.7279** | 12 | | 0.3027* | 22 | | -0.7059** |
4 | | -0.1359 | 13 | | 0.1231 | 23 | | 0.3068* |
5 | | 0.7645** | 14 | | -0.81** | 24 | | 0.0796 |
6 | | 0.1457 | 15 | | 0.5745 | 25 | | 0.1323 |
7 | | -0.5937* | 16 | | 0.7091** | 26 | | -0.5311** |
8 | | -0.0966 | 17 | | -0.7995** | 27 | | 0.1808* |
9 | | -0.6991** | 18 | | -0.7254** | |||
10 | | -0.5523** | 19 | | 0.1249 |
建模方法 | 建模精度 | 验证精度 | ||||
---|---|---|---|---|---|---|
决定系数R2 | 均方根误差RMSE | 决定系数R2 | 均方根误差RMSE | 相对分析误差RPD | ||
多元逐步回归 | 0.682 | 4.667 | 0.709 | 4.487 | 1.791 | |
支持向量机 | 0.709 | 4.974 | 0.695 | 4.850 | 1.878 | |
BP神经网络 | 0.747 | 4.568 | 0.758 | 4.142 | 2.135 |
建模方法 | 建模精度 | 验证精度 | ||||
---|---|---|---|---|---|---|
决定系数R2 | 均方根误差RMSE | 决定系数R2 | 均方根误差RMSE | 相对分析误差RPD | ||
多元逐步回归 | 0.682 | 4.667 | 0.709 | 4.487 | 1.791 | |
支持向量机 | 0.709 | 4.974 | 0.695 | 4.850 | 1.878 | |
BP神经网络 | 0.747 | 4.568 | 0.758 | 4.142 | 2.135 |
等级 | 反演值 | 实测值 | |||
---|---|---|---|---|---|
个数/个 | 所占比例/% | 个数/个 | 所占比例/% | ||
<28 | 3 | 3.19 | 5 | 5.32 | |
28~34 | 7 | 7.45 | 7 | 7.45 | |
34~36 | 4 | 4.26 | 3 | 3.19 | |
36~38 | 4 | 4.26 | 4 | 4.26 | |
38~40 | 2 | 2.13 | 4 | 4.26 | |
40~42 | 13 | 13.83 | 12 | 12.77 | |
42~44 | 17 | 18.09 | 14 | 14.89 | |
44~46 | 13 | 13.83 | 10 | 10.64 | |
46~48 | 13 | 13.83 | 11 | 11.70 | |
48~50 | 5 | 5.32 | 7 | 7.45 | |
50~52 | 5 | 5.32 | 6 | 6.38 | |
>52 | 8 | 8.51 | 11 | 11.70 |
等级 | 反演值 | 实测值 | |||
---|---|---|---|---|---|
个数/个 | 所占比例/% | 个数/个 | 所占比例/% | ||
<28 | 3 | 3.19 | 5 | 5.32 | |
28~34 | 7 | 7.45 | 7 | 7.45 | |
34~36 | 4 | 4.26 | 3 | 3.19 | |
36~38 | 4 | 4.26 | 4 | 4.26 | |
38~40 | 2 | 2.13 | 4 | 4.26 | |
40~42 | 13 | 13.83 | 12 | 12.77 | |
42~44 | 17 | 18.09 | 14 | 14.89 | |
44~46 | 13 | 13.83 | 10 | 10.64 | |
46~48 | 13 | 13.83 | 11 | 11.70 | |
48~50 | 5 | 5.32 | 7 | 7.45 | |
50~52 | 5 | 5.32 | 6 | 6.38 | |
>52 | 8 | 8.51 | 11 | 11.70 |
[1] | 秦其明, 范闻捷, 任华忠, 等. 农田定量遥感理论、方法与应用[M]. 北京: 科学出版社, 2018. |
[2] | 吴炳方, 张淼, 曾红伟, 等. 大数据时代的农情监测与预警[J]. 遥感学报, 2016, 20(5):1027-1037. |
[3] |
Setiyono T D, Quicho E D, Gatti L, et al. Spatial rice yield estimation based on MODIS and sentinel-1 SAR data and ORYZA crop growth model[J]. Remote Sensing, 2018, 10(2):293.
doi: 10.3390/rs10020293 URL |
[4] |
Ballesteros R, Ortega J F, Hernandez D, et al. Onion biomass monitoring using UAV-based RGB imaging[J]. Precision Agriculture, 2018, 19(5):840-857.
doi: 10.1007/s11119-018-9560-y URL |
[5] | 毛智慧, 邓磊, 孙杰, 等. 无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究[J]. 光谱学与光谱分析, 2018, 38(9):2923-2931. |
[6] |
Guillot B, Pouget F. UAV application incoastal environment, example of the oleron island for dunes and dikes survey[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-3/W3(1):321-326.
doi: 10.5194/isprsarchives-XL-3-W3-321-2015 URL |
[7] | 孙刚, 黄文江, 陈鹏飞, 等. 轻小型无人机多光谱遥感技术应用进展[J]. 农业机械学报, 2018, 49(3):1-17. |
[8] | 孙中宇, 陈燕乔, 杨龙, 等. 轻小型无人机低空遥感及其在生态学中的应用进展[J]. 应用生态学报, 2017, 28(2):528-536. |
[9] | 胡建波, 张建. 无人机遥感在生态学中的应用进展[J]. 生态学报, 2018, 38(1):20-30. |
[10] | 陈燕, 王登伟, 黄春燕, 等. 新疆棉花LAI和叶绿素密度的高光谱估算研究[J]. 遥感信息, 2007(2):33-36,41. |
[11] | 依尔夏提·阿不来提, 白灯莎·买买提艾力, 买买提·沙吾提, 等. 基于高光谱和BP神经网络的棉花冠层叶绿素含量联合估算[J]. 光学学报, 2019, 39(9):372-380. |
[12] | 陈硕博. 无人机多光谱遥感反演棉花光合参数与水分的模型研究[D]. 杨凌:西北农林科技大学, 2019. |
[13] | 罗丹, 常庆瑞, 齐雁冰, 等. 基于光谱指数的冬小麦冠层叶绿素含量估算模型研究[J]. 麦类作物学报, 2016, 36(9):1225-1233. |
[14] | 齐雁冰, 楚万林, 解飞, 等. 基于高光谱的渭北旱塬区棉花冠层叶面积指数估算[J]. 干旱地区农业研究, 2017, 35(1):114-121. |
[15] | 田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演[J]. 农业机械学报, 2016, 47(11):285-293. |
[16] | 于雷, 洪永胜, 耿雷, 等. 基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报, 2015, 31(14):103-109. |
[17] | 王丹阳, 陈红艳, 王桂峰, 等. 无人机多光谱反演黄河口重度盐渍土盐分的研究[J]. 中国农业科学, 2019, 52(10):1698-1709. |
[18] | 周晓敏, 赵力彬, 张新利. 低空无人机影像处理技术及方法探讨[J]. 测绘与空间地理信息, 2012, 35(2):182-184. |
[19] | 奚雪, 赵庚星. 基于无人机多光谱遥感的冬小麦叶绿素含量反演及监测[J]. 中国农学通报, 2020, 36(20):119-126. |
[20] | 厉彦玲, 赵庚星, 常春艳, 等. OLI与HSI影像融合的土壤盐分反演模型[J]. 农业工程学报, 2017, 33(21):173-180. |
[21] |
刘明杰, 徐卓揆, 郜允兵, 等. 基于机器学习的稀疏样本下的土壤有机质估算方法[J]. 地球信息科学学报, 2020, 22(9):1799-1813.
doi: 10.12082/dqxxkx.2020.190441 |
[22] | 张卓然, 常庆瑞, 张廷龙, 等. 基于支持向量机的棉花冠层叶片叶绿素含量高光谱遥感估算[J]. 西北农林科技大学学报:自然科学版, 2018, 46(11):39-45. |
[23] | 李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算[J]. 农业工程学报, 2016, 32(16):135-142. |
[24] |
Senthilnath J, Manasa K, Akanksha D, et al. Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods[J]. Computers and Electronics in Agriculture, 2017, 140:8-24
doi: 10.1016/j.compag.2017.05.027 URL |
[25] | 雷亚平, 韩迎春, 王国平, 等. 无人机低空数字图像诊断棉花苗情技术[J]. 中国棉花, 2017, 44(5):23-25. |
[26] | 李静, 王建军, 朱安. 基于低成本无人机的水稻叶片SPAD值遥感估测[J]. 吉林农业, 2017(18):68. |
[27] | 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5):107-114. |
[28] | 梁后军, 郭蓉榕, 谢睿, 等. 基于神经网络的棉花产量预测[J]. 中国纤检, 2020(6):126-128. |
[29] | 范迎迎, 钱育蓉, 杨柳, 等. 基于BP神经网络的遥感影像棉花识别方法[J]. 计算机工程与设计, 2017, 38(5):1356-1360. |
[30] |
Urselmans T T, Schmidt H, Joergensen R G, et al. Usefulness of near-infrared spectroscopy to determine biological and chemical soil properties: Importance of sample pre-treatment[J]. Soil Biology and Biochemistry, 2008, 40(5):1178-1188.
doi: 10.1016/j.soilbio.2007.12.011 URL |
[31] | 孙勃岩, 常庆瑞, 刘梦云. 冬小麦冠层叶绿素质量分数高光谱遥感反演研究[J]. 西北农业学报, 2017, 26(4):552-559. |
[32] | 杨可明, 张婉婉, 卓伟, 等. 红边光谱谐波分析的神经网络法叶绿素含量反演研究[J]. 科学技术与工程, 2016, 16(24):19-24. |
[33] | 刘文雅, 潘洁. 基于神经网络的马尾松叶绿素含量高光谱估算模型[J]. 应用生态学报, 2017, 28(4):1128-1136. |
[1] | MA Yuanhua, YIN Caixia, WANG Hongyu, LIU Yuxuan, LIU Qiantong, ZHANG Ze. Estimation Model of Cotton Leaf Phosphorus Content Based on Hyperspectral Reflectance [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 123-132. |
[2] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[3] | HONG Bo, ZHANG Ze, ZHANG Qiang, MA Yiru, YI Xiang, LV Xin. The Nitrogen Content in Cotton Leaves: Estimation Based on Digital Image [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 49-55. |
[4] | XUE Wenrui, YANG Zihui, ZHANG Yong, GUO Shujiang, WANG Qiangqiang, ZHANG Jianhui. Vegetation Cover Response to Groundwater and Precipitation Changes in Minqin Desert Oasis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 102-109. |
[5] | ZHOU Xianlin, QIN Qin, MENG Yongming, WANG Long, HU Chengcheng, ZHU Haiyong, LAI Bo. Effects of Different Amendments on Saline-alkali Soil Improvement and Cotton Growth in Xinjiang [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 91-96. |
[6] | MA Lei, HUANG Xiaojun, GANBAT Dashzebegd, MUNGUNKHUYAG Ariunaad, TSAGAANTSOOJ Nanzadd, ALTANCHIMEG Dorjsuren, BAO Gang, TONG Siqin, BAO Yuhai, ENKHNASAN Davaadorj. Monitoring Forest Insect Pests by Different Remote Sensing Sensors: Research Progress and Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 91-99. |
[7] | SONG Zhao, LIANG Ludan, HUANG Wenyin, CHEN Xiao, CAO Jian, HE Yuzhi, ZHANG Baige. Establishment and Application of Correlation Model Between Chlorophyll Content and SPAD Value in Pepper Under Waterlogging Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 30-37. |
[8] | GUO Yanyun, WANG Xuejiao, WANG Sen, HUO Xunguo, HU Qirui, JI Chunrong. Cotton Phenology in Xinjiang: The Response to Climate Change and Sensitivity Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 113-121. |
[9] | YANG Weijun, HUI Chao, CHEN Yuxin, SONG Shilong, SHI Chunling, CHEN Lei. Effects of Continuous Cropping Years on Organic Carbon Distribution in Soil Aggregates in Cotton Fields [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 104-108. |
[10] | XU Min, JIN Lulu, SUN Liyuan, LI Ruichun, WANG Zisheng. Cotton Chemical Defoliant: Application Effect in Liaohe Basin Cotton Area [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 47-54. |
[11] | Yin Guo, Lu Zhengying, Sun Lu, Zhang Yanbo, Li Shiyun. Chromosome Ploidy Analysis and Interspecific Hybridization of Abelmoschus manihot [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 16-21. |
[12] | Liu Xiaowei, He Wenqing, Li Zhiqiang, Li Shengtai, Lv Jun. Effects of Degradable Plastic Film on Agronomic Characters and Yield of Cotton in Shihezi Reclamation Area [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 24-27. |
[13] | Chen Min, Zheng Shufeng, Xu Daoqing, Liu Xiaoling, Wang Wei, Li Shuying, Kan Huachun. Effects of One-off Reduced Fertilization of Slow-release Fertilizer on Nitrogen Accumulation and Yield of Machine-picked Cotton [J]. Chinese Agricultural Science Bulletin, 2021, 37(4): 19-24. |
[14] | Lou Hui, Zhao Zengqiang, Zhu Jincheng, Zhang Wei. Melatonin Under Low Temperature Stress: Effects on Germination Characteristics of Cotton Seeds [J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 13-19. |
[15] | Wang Qian, Li Ziyu, Liu Jianguo. Characteristics of Amino Sugar Accumulation in Long-term Continuous Cropping Soil of Cotton in Xinjiang Oasis [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 59-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||