Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (23): 138-143.doi: 10.11924/j.issn.1000-6850.casb2020-0813
Special Issue: 土壤重金属污染
Previous Articles Next Articles
Teng Qing1(), Wang Chun2(
), Lin Xuanjie1, Xie Meibing1, Cheng Lusi1
Received:
2020-12-21
Revised:
2021-03-05
Online:
2021-08-15
Published:
2021-08-26
Contact:
Wang Chun
E-mail:qing309102@163.com;283964034@qq.com
CLC Number:
Teng Qing, Wang Chun, Lin Xuanjie, Xie Meibing, Cheng Lusi. Remediation Technologies of Polycyclic Aromatic Hydrocarbons Contaminated Soil: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(23): 138-143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0813
环数 | PAHs名称 | 缩写 | 分子量 | 化学式 | 溶解度 | TEF | Log Kow |
---|---|---|---|---|---|---|---|
2 | Naphthalenee萘 | Nap | 128 | C10H8 | 12500~34000 | 0.001 | 3.37 |
3 | Acenaphtylene二氢苊 | Acy | 152 | C10H4(CH)2 | — | 0.001 | 3.98 |
3 | Acenaphthene苊 | Ace | 154 | C10H6(CH)2 | 3420 | 0.001 | 4.07 |
3 | Fluorene芴 | Flu | 166 | C13H10 | 800 | 0.001 | 4.18 |
3 | Phenanthrene菲 | Phe | 178 | C14H10 | 435 | 0.001 | 4.46 |
3 | Anthracene蒽 | Ant | 178 | C14H10 | 59 | 0.01 | 4.5 |
4 | Fluoranthene荧蒽 | Fla | 202 | C16H10 | 260 | 0.001 | 4.9 |
4 | Pyrene芘 | Pyr | 202 | C18H22 | 133 | 0.001 | 4.88 |
4 | Benzo[a]anthracene苯并[a]荧 | B[a]A | 228 | C18H22 | 11 | 0.1 | 5.63 |
4 | Chrysene? | Chy | 228 | C18H22 | 1.9 | 0.01 | 5.63 |
5 | Benzo[b]fuoranthene苯并[b]荧蒽 | B[b]F | 252 | C20H12 | 2.4 | 0.1 | 6.04 |
5 | Benzo[k]fuoranthene苯并[k]荧蒽 | B[k]F | 252 | C20H12 | — | 0.1 | — |
5 | Benzo[a]pyrene苯并[a]芘 | B[a]P | 252 | C20H12 | 3.8 | 1 | 6.06 |
6 | Dibenz[a, h] anthraceno二苯并[a,h]蒽 | DBA | 278 | C22H14 | 0.4 | 1 | 6.86 |
6 | Benzo[g.h.i]perylene苯并[g.h.i]苝 | BPE | 276 | C22H12 | 2.4 | 0.01 | 6.21 |
7 | Indeno[1, 2, 3-cd]pyrene茚并[1, 2, 3-cd]芘 | IPY | 276 | C22H12 | — | 0.1 | 6.58 |
环数 | PAHs名称 | 缩写 | 分子量 | 化学式 | 溶解度 | TEF | Log Kow |
---|---|---|---|---|---|---|---|
2 | Naphthalenee萘 | Nap | 128 | C10H8 | 12500~34000 | 0.001 | 3.37 |
3 | Acenaphtylene二氢苊 | Acy | 152 | C10H4(CH)2 | — | 0.001 | 3.98 |
3 | Acenaphthene苊 | Ace | 154 | C10H6(CH)2 | 3420 | 0.001 | 4.07 |
3 | Fluorene芴 | Flu | 166 | C13H10 | 800 | 0.001 | 4.18 |
3 | Phenanthrene菲 | Phe | 178 | C14H10 | 435 | 0.001 | 4.46 |
3 | Anthracene蒽 | Ant | 178 | C14H10 | 59 | 0.01 | 4.5 |
4 | Fluoranthene荧蒽 | Fla | 202 | C16H10 | 260 | 0.001 | 4.9 |
4 | Pyrene芘 | Pyr | 202 | C18H22 | 133 | 0.001 | 4.88 |
4 | Benzo[a]anthracene苯并[a]荧 | B[a]A | 228 | C18H22 | 11 | 0.1 | 5.63 |
4 | Chrysene? | Chy | 228 | C18H22 | 1.9 | 0.01 | 5.63 |
5 | Benzo[b]fuoranthene苯并[b]荧蒽 | B[b]F | 252 | C20H12 | 2.4 | 0.1 | 6.04 |
5 | Benzo[k]fuoranthene苯并[k]荧蒽 | B[k]F | 252 | C20H12 | — | 0.1 | — |
5 | Benzo[a]pyrene苯并[a]芘 | B[a]P | 252 | C20H12 | 3.8 | 1 | 6.06 |
6 | Dibenz[a, h] anthraceno二苯并[a,h]蒽 | DBA | 278 | C22H14 | 0.4 | 1 | 6.86 |
6 | Benzo[g.h.i]perylene苯并[g.h.i]苝 | BPE | 276 | C22H12 | 2.4 | 0.01 | 6.21 |
7 | Indeno[1, 2, 3-cd]pyrene茚并[1, 2, 3-cd]芘 | IPY | 276 | C22H12 | — | 0.1 | 6.58 |
分类 | 优点 | 缺点 | 主要影响因素 | 应用范围 | 参考文献 |
---|---|---|---|---|---|
生物处理 | 成本低;处理量大; 操作方便 | 处理效率低;处理周期长; 占地面积大;受环境因素限制 | 微生物类型;污染土壤特性; 土壤湿度、温度和pH | PAHs含量低 的土壤 | [12,19,43] |
热脱附 | 处理效率高; 处理能力强 | 运行和维护成本高; 工业化推广难 | 污染土壤特性;土壤含水率、 粒径和渗透性;脱附时间和温度 | PAHs含量高 的土壤 | [26,44-45] |
萃取修复 | 处理效率高;处理能力强; 操作方便 | 萃取剂用量大;处理量有限; 工业化推广难 | 污染土壤特性;溶剂比例、 温度;萃取压力和时间 | 高环PAHs 污染土壤 | [29,46] |
化学氧化 | 降解速度快;外界干扰小; 无二次污染 | 化学试剂用量大; 运行和维护成本高 | 氧化剂类型;氧化剂用量; 污染土壤特性 | 各种类型 | [31,47-48] |
光催化氧化 | 氧化性强;处理彻底; 绿色环保 | 受环境因素限制; 只能处理表层土壤; 工业化推广难 | 污染土壤特性; 光类型和强度 | PAHs含量低 的土壤 | [37,49-50] |
电化学修复 | 成本低;操作方便; 降解速度快 | 受环境因素限制;能耗高; 工业化推广难 | 污染土壤特性; 电能强度 | PAHs含量低的 土壤 | [40,51-52] |
分类 | 优点 | 缺点 | 主要影响因素 | 应用范围 | 参考文献 |
---|---|---|---|---|---|
生物处理 | 成本低;处理量大; 操作方便 | 处理效率低;处理周期长; 占地面积大;受环境因素限制 | 微生物类型;污染土壤特性; 土壤湿度、温度和pH | PAHs含量低 的土壤 | [12,19,43] |
热脱附 | 处理效率高; 处理能力强 | 运行和维护成本高; 工业化推广难 | 污染土壤特性;土壤含水率、 粒径和渗透性;脱附时间和温度 | PAHs含量高 的土壤 | [26,44-45] |
萃取修复 | 处理效率高;处理能力强; 操作方便 | 萃取剂用量大;处理量有限; 工业化推广难 | 污染土壤特性;溶剂比例、 温度;萃取压力和时间 | 高环PAHs 污染土壤 | [29,46] |
化学氧化 | 降解速度快;外界干扰小; 无二次污染 | 化学试剂用量大; 运行和维护成本高 | 氧化剂类型;氧化剂用量; 污染土壤特性 | 各种类型 | [31,47-48] |
光催化氧化 | 氧化性强;处理彻底; 绿色环保 | 受环境因素限制; 只能处理表层土壤; 工业化推广难 | 污染土壤特性; 光类型和强度 | PAHs含量低 的土壤 | [37,49-50] |
电化学修复 | 成本低;操作方便; 降解速度快 | 受环境因素限制;能耗高; 工业化推广难 | 污染土壤特性; 电能强度 | PAHs含量低的 土壤 | [40,51-52] |
[1] | 张俊叶, 俞菲, 俞元春. 城市土壤多环芳烃污染研究进展[J]. 土壤通报, 2018, 49(1):243-252. |
[2] | 张松, 卢静, 刘锦卉, 等. 固定化微生物技术对土壤中多环芳烃修复的研究进展[J]. 科技通报, 2018, 34(3):1-5. |
[3] | 刘亮. 生物炭对土壤微生物及其强化修复多环芳烃污染的影响与机理研究[D]. 上海:上海交通大学, 2015:1-135. |
[4] | 刘锦卉, 卢静, 张松. 微生物降解土壤多环芳烃技术研究进展[J]. 科技通报, 2018, 34(4):1-6. |
[5] |
Lamichhane S, Krishna K C B, Sarukkalige R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review[J]. Chemosphere, 2016, 148:336-353.
doi: 10.1016/j.chemosphere.2016.01.036 pmid: 26820781 |
[6] |
Soltani N, Keshavarzi B, Moore F, et al. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran[J]. Science of the total environment, 2015, 505(6):712-723.
doi: 10.1016/j.scitotenv.2014.09.097 URL |
[7] |
Jin T S, Han M, Han K, et al. Health risk of ambient PM10-bound PAHs at bus stops in spring and autumn in Tianjin, China[J]. Aerosol and Air Quality Research, 2018, 18:1828-1838.
doi: 10.4209/aaqr.2017.11.0461 URL |
[8] |
Rajasekhar B, Nambi I M, Govindarajan S K. Human health risk assessment of ground water contaminated with petroleum PAHs using monte carlo simulations: A case study of an Indian metropolitan city[J]. Journal of Environmental Management, 2018, 205:183-191.
doi: S0301-4797(17)30947-7 pmid: 28985597 |
[9] |
Alegbeleye O O, Opeolu B O, Jackson V A. Polycyclic aromatic hydrocarbons: A critical review of environmental occurrence and bioremediation[J]. Environmental Management, 2017, 60(4):758-783.
doi: 10.1007/s00267-017-0896-2 pmid: 28573478 |
[10] |
Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry, 1996, 11(1-2):121-127.
doi: 10.1016/0883-2927(95)00076-3 URL |
[11] | 曾军, 吴宇澄, 林先贵. 多环芳烃污染土壤微生物修复研究进展[J]. 微生物学报, 2020, 60(12):2804-2815. |
[12] | 吴枭雄, 王红旗, 刘自力. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 环境与发展, 2018, 30(7):108-109. |
[13] | 罗俊鹏. 多环芳烃降解菌的筛选、降解特性及其与化学氧化联合应用研究[D]. 南昌:南昌大学, 2019. |
[14] | 金卫根, 陈传红, 邱峰芳, 等. 农田土壤多环芳烃污染的微生物修复试验[J]. 江西农业, 2019(16):21-23. |
[15] | 周宇, 马刚平, 张向伟, 等. 多环芳烃类污染土壤强化生物修复技术研究及应用[J]. 环境工程, 2017, 35(12):184-188. |
[16] | 吕鑫, 孙延瑜, 闵军, 等. 微生物降解土壤中多环芳烃的研究进展[J]. 安徽农业科学, 2020, 48(4):1-7. |
[17] | 贺建. 表面活性剂-菌群强化泥浆反应器修复菲污染土壤机理研究[D]. 北京:中国矿业大学, 2019. |
[18] | 姬丹. 生物刺激法修复菲污染土壤研究[D]. 北京:中国矿业大学, 2019. |
[19] | 张腾飞, 黄玉杰, 季蕾, 等. 石油污染土壤生物修复技术研究进展[J]. 山东科学, 2020, 33(5):106-112,126. |
[20] | 徐佰青, 李平平, 王山榕, 等. 植物修复石油污染土壤的研究进展[J]. 当代化工, 2020, 49(7):1527-1531. |
[21] | 吴云霄. 混种模式对土壤中PAHs污染的强化修复作用[J]. 生态环境学报, 2015, 24(5):873-878. |
[22] | 吴卿, 王雪飞, 李亚男, 等. 玉米对城市排污河萘污染沉积物的修复[J]. 安全与环境学报, 2015, 15(2):251-255. |
[23] | 谢丽凤, 吴卫飞. 微生物-植物联合修复石油污染土壤的研究进展[J]. 环境与发展, 2019, 31(8):34-35. |
[24] | 刘鑫, 黄兴如, 张晓霞, 等. 高浓度多环芳烃污染土壤的微生物-植物联合修复技术研究[J]. 南京农业大学学报, 2017, 40(4):632-640. |
[25] | 蔡烈刚, 沈婷, 李智民, 等. 原位生物修复过程中石油烃降解特征研究[J]. 资源环境与工程, 2018, 32(4):606-610. |
[26] | 赵涛, 马刚平, 周宇, 等. 多环芳烃类污染土壤热脱附修复技术应用研究[J]. 环境工程, 2017(11):183-186. |
[27] | 范宇, 徐飞. 多环芳烃污染土壤修复技术应用对比研究[J]. 建筑科技, 2019, 3(6):52-55. |
[28] | 马妍, 董彬彬, 徐东谷, 等. VOCs/SVOCs污染土壤常用修复技术及其在美国超级基金污染场地中的应用[J]. 环境工程技术学报, 2016, 6(4):391-396. |
[29] | 石念荣, 韩玉谦, 冯晓梅, 等. 响应面法优化亚临界流体萃取牡蛎中持久性有机污染物工艺[J]. 食品科技, 2017, 42(9):309-314. |
[30] | 张晶, 陈冠群, 魏俊峰, 等. 多环芳烃污染土壤修复技术研究进展[J]. 安徽农业科学, 2016, 44(8):70-72,207. |
[31] |
Ma X H, Zhao L, Dong Y H, et al. Enhanced Fenton degradation of polychlorinated biphenyls in capacitor-oil-contaminated soil by chelating agents[J]. Chemical Engineering Journal, 2018, 333:370-379
doi: 10.1016/j.cej.2017.09.167 URL |
[32] | 王宏亮, 陈雨, 夏凡. 化学氧化法对多环芳烃污染土壤修复应用探讨[J]. 绿色科技, 2019(12):139-141. |
[33] | 付文怡. 多环芳烃污染土壤的化学氧化修复及微生物群落多样性研究[D]. 上海:华东师范大学, 2018. |
[34] | 杨勇, 张蒋维, 陈恺, 等. 化学氧化法治理焦化厂PAHs污染土壤[J]. 环境工程学报, 2016, 10(1):427-431. |
[35] |
Tamadoni A, Qaderi F. Optimization of soil remediation by ozonation for PAHs contaminated Soils[J]. Ozone Science and Engineering, 2019, 41(5):1-19.
doi: 10.1080/01919512.2019.1547045 URL |
[36] |
Nana Y A, Wang J Y, Zhao L. Modelling PAH degradation in contaminated soils in Canada using a modified process-based model (DNDC)[J]. Soil Science Society of America Journal, 2019, 83(3):605-613.
doi: 10.2136/sssaj2018.11.0435 URL |
[37] | 王静. 铁氧化物复合材料的制备及其修复多环芳烃污染土壤的研究[D]. 镇江:江苏大学, 2020. |
[38] | 胡明江, 虞婷婷, 崔秋娜, 等. 异质结型SnO2-TiO2纳米纤维光催化降解柴油机多环芳烃[J]. 环境科学学报, 2018, 38(9):151-159. |
[39] | 宋友桂, 何伟煜, 孙贤波, 等. MoO3/TiO2纳米管的制备及其光催化降解多环芳烃的机制[J]. 环境化学, 2020, 39(3):624-635. |
[40] | 潘栋宇, 侯梅芳, 刘超男, 等. 多环芳烃污染土壤化学修复技术的研究进展[J]. 安全与环境工程, 2018, 25(3):54-60,66. |
[41] | 计敏惠, 邹华, 杜玮, 等. 表面活性剂增效电动技术修复多环芳烃污染土壤[J]. 环境工程学报, 2016, 10(7):3871-3876. |
[42] |
Hahladakis J N, Lekkas N, Smponias A, et al. Sequential application of chelating agents and innovative surfactants for the enhanced electroremediation of real sediments from toxic metals and PAHs[J]. Chemosphere, 2014, 105:44-52.
doi: 10.1016/j.chemosphere.2013.11.022 pmid: 24321329 |
[43] | 姚伦芳. 生物修复对多环芳烃在土壤不同有机组分中分配特征的影响[J]. 环保科技, 2020, 26(4):22-25. |
[44] | 田垚, 杨永刚, 韩自玉, 等. 电阻加热条件优化及其对污染土壤中苯并(a)芘的去除[J]. 环境工程学报, 2019, 13(10):2336-2346. |
[45] | 徐飞, 沈婷婷. 热脱附技术在化工厂污染土壤修复中的工程应用[J]. 当代化工, 2020, 49(5):997-1000. |
[46] | 王忠旺, 韩玮, 陈雨龙, 等. 表面活性剂对焦化污染土壤中多环芳烃淋洗修复研究[J]. 环境污染与防治, 2020, 42(6):690-695. |
[47] | 周欣, 张代荣, 李萍. 多环芳烃污染土壤化学氧化修复技术应用研究[J]. 环境与发展, 2020, 32(2):89-90. |
[48] | Pourfadakari S, Ahmadi M, Jaafarzadeh N, et al. Remediation of PAHs contaminated soil using a sequence of soil washing with biosurfactant produced by Pseudomonas aeruginosa strain PF2 and electrokinetic oxidation of desorbed solution, effect of electrode modification with Fe3O4 nanoparticles[J]. Journal of Hazardous Materials, 2019, 379. |
[49] | Wang C, Li Y, Tan H, et al. A novel microbe consortium, nano-visible light photocatalyst and microcapsule system to degrade PAHs[J]. Chemical Engineering Journal, 2018, 359. |
[50] | 史宁. TiO2/CA的制备及其光催化降解土壤淋洗液中PAHs的研究[D]. 天津:天津科技大学, 2019. |
[51] | 殷操, 俞河, 蔡巧兰, 等. 电化学氧化技术处理多环芳烃污染土壤洗脱液[J]. 浙江冶金, 2019(1):35-38. |
[52] | 胡双俊, 贺春尧, 李宁. 生物电化学系统处理难降解有机污染物研究进展[J]. 能源化工, 2019, 40(1):40-45. |
[1] | SUN Yangcun, YIN Ziliang, GE Jingping. Accumulation of Heavy Metal Pollutants in Soil: Sources and Treatment Methods [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 75-79. |
[2] | SONG Jia, PAN Yan, WANG Xiwei, YU Lihua. The Degradation of Herbicide Atrazine in Soil: Current Research Status [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 90-95. |
[3] | Huang Di, Huang Zhihong, Kong Hui, Yi Hao, Long Xiang, Yang Yanqun, Xiao Huining. Stabilization Remediation Technology and Remediation Practice of Heavy Metal Contaminated Farmland Soil [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 72-78. |
[4] | Li Falin, Zhuang Mulai, Qian Xiaojie, Shi Guoqiang, Cao Minghua, Zhang Tianxiang, Lin Xiaolan, Wu Ying, Li Yan. Effects of Soil Remediation and Mulching with Grass-proof Cloth on Soil Nitrogen and Phosphorus Loss in Tableland Pomelo Orchard [J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 94-100. |
[5] | Zhongyuan Li, Guozhong Wang, Jiyu Zhang, Qiting Zuo, Huanling Cheng. Water Environmental Quality Assessment of Zhangwu Reservoir [J]. Chinese Agricultural Science Bulletin, 2020, 36(9): 30-36. |
[6] | Dai Qingyun, Liu Daihuan, Wang Dexin, Li Pengxiang, Zhu Wei, Gui Juan. A Review on Silicon: Effect on Rice Growth and Its Mechanism of Relieving Cadmium Toxicity [J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 86-92. |
[7] | Wu Mingjie, Wang He, Wu Yining, Wang Weihua, Zou Hongfei. Research Status of Polycyclic Aromatic Hydrocarbon Degradation in Soil Environment Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 60-67. |
[8] | Zhao Shouping, Ye Xuezhu, Zhang Qi, Xiao Wendan. Soil Contaminated by Heavy Metals: Comparison of Bioremediation Methods [J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 83-91. |
[9] | Yang Fengshan, Wang Yanbo, Sun Cong, He Jing, Wang Sijie, Ma Yukun, Fu Haiyan, Liu Chunguang. Highly Efficient Degradation Bacteria: Remediation Effect on Soil Polluted by Fomesafen [J]. Chinese Agricultural Science Bulletin, 2020, 36(15): 68-73. |
[10] | Zhang Tongxin, Li Huidong, Zhang Hongqi. Botanical Active Components Degrades Organophosphorus Pesticides [J]. Chinese Agricultural Science Bulletin, 2020, 36(1): 135-138. |
[11] | . Ecological Restoration Technology of Lakes:Research Progress [J]. Chinese Agricultural Science Bulletin, 2019, 35(26): 84-93. |
[12] | 陈寒玉, and 靳慧霞. Screening of an Aerobic Denitrification Strain and Its Nitrogen Removal Characteristics for Soil [J]. Chinese Agricultural Science Bulletin, 2018, 34(20): 55-62. |
[13] | . Elements Change and Mechanization Level of Foxtail Millet Production [J]. Chinese Agricultural Science Bulletin, 2018, 34(10): 153-158. |
[14] | Jin Huixia,Chen Hanyu,Chen Jisuan and Zhang Kefeng. Effect of Different Farming Modes on Greenhouse Soil Rhizosphere Microbial Community and Soil Secondary Salinization [J]. Chinese Agricultural Science Bulletin, 2017, 33(15): 110-116. |
[15] | . Screening of Soil Stabilization Repair Agent for Lead Contaminated Soil by Battery Factory [J]. Chinese Agricultural Science Bulletin, 2016, 32(5): 113-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||