Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (29): 84-91.doi: 10.11924/j.issn.1000-6850.casb2020-0820
Special Issue: 玉米
Previous Articles Next Articles
Zhang Dongdong1(), Zhou Kanshe1, Dai Rui1, Yuan Lei1, Wang Jiarui2, Bian Duo1(
)
Received:
2020-12-21
Revised:
2021-02-05
Online:
2021-10-15
Published:
2021-10-29
Contact:
Bian Duo
E-mail:dongdongzhang@zju.edu.cn;dor_ben2000yahoo.com.cn
CLC Number:
Zhang Dongdong, Zhou Kanshe, Dai Rui, Yuan Lei, Wang Jiarui, Bian Duo. The Estimation Model of Fractional Vegetation Cover of Maize Based on the Real Image of Farmland[J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 84-91.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0820
名称 | 计算公式 |
---|---|
绿减红(G-B) | G-B |
超绿减超红(ExG-ExR) | 2×G-R-B-(1.4×R-G) |
超绿算子(ExG) | 2×G-R-B |
超红算子(ExR) | 1.4×R-G |
红减绿(R-G) | R-G |
归一化指数(NDI) | (G-R)/(G+R) |
(G-B)/|R-G| | (G-B)/|R-G| |
Vegetative (VEG) | g/(ra×b1-a), a=0.667 |
作物提取颜色算子(CIVE) | 0.441×R-0.811×G+0.385×B+18.78745 |
名称 | 计算公式 |
---|---|
绿减红(G-B) | G-B |
超绿减超红(ExG-ExR) | 2×G-R-B-(1.4×R-G) |
超绿算子(ExG) | 2×G-R-B |
超红算子(ExR) | 1.4×R-G |
红减绿(R-G) | R-G |
归一化指数(NDI) | (G-R)/(G+R) |
(G-B)/|R-G| | (G-B)/|R-G| |
Vegetative (VEG) | g/(ra×b1-a), a=0.667 |
作物提取颜色算子(CIVE) | 0.441×R-0.811×G+0.385×B+18.78745 |
颜色指数 | 覆盖度 | |||
---|---|---|---|---|
T9 | T10 | T16 | T平均 | |
G-B | 0.909** | 0.901** | 0.907** | 0.887** |
ExG-ExR | 0.980** | 0.980** | 0.981** | 0.977** |
ExG | 0.964** | 0.963** | 0.967** | 0.956** |
ExR | -0.981** | -0.985** | -0.984** | -0.985** |
R-G | -0.972** | -0.975** | -0.982** | -0.976** |
NDI | 0.973** | 0.974** | 0.973** | 0.975** |
G-B/|R-G| | -0.115 | -0.103 | -0.067 | -0.143 |
VEG | 0.958** | 0.959** | 0.945** | 0.951** |
CIVE | -0.968** | -0.966** | -0.970** | -0.960** |
样本数量 | 43 | 74 | 49 | 84 |
颜色指数 | 覆盖度 | |||
---|---|---|---|---|
T9 | T10 | T16 | T平均 | |
G-B | 0.909** | 0.901** | 0.907** | 0.887** |
ExG-ExR | 0.980** | 0.980** | 0.981** | 0.977** |
ExG | 0.964** | 0.963** | 0.967** | 0.956** |
ExR | -0.981** | -0.985** | -0.984** | -0.985** |
R-G | -0.972** | -0.975** | -0.982** | -0.976** |
NDI | 0.973** | 0.974** | 0.973** | 0.975** |
G-B/|R-G| | -0.115 | -0.103 | -0.067 | -0.143 |
VEG | 0.958** | 0.959** | 0.945** | 0.951** |
CIVE | -0.968** | -0.966** | -0.970** | -0.960** |
样本数量 | 43 | 74 | 49 | 84 |
时间分组 | 拟合结果 | 精度检验 | |||
---|---|---|---|---|---|
回归方程 | 决定系数R2 | RMSE | MAE | ||
T9 | FVC= -0.0277×CIVE+0.5829 | 0.9356 | 0.0859 | 0.0726 | |
T10 | FVC= -0.0292×CIVE+0.5979 | 0.9348 | 0.0861 | 0.0703 | |
T16 | FVC= -0.0269×CIVE+0.5649 | 0.9385 | 0.0782 | 0.0650 | |
T平均 | FVC= -0.0279×CIVE+0.5918 | 0.9243 | 0.0937 | 0.0828 | |
T9 | FVC=0.0249×(G-B)-0.5141 | 0.804 | 0.1140 | 0.1006 | |
T10 | FVC=0.0291×(G-B)-0.6914 | 0.8208 | 0.15392 | 0.1293 | |
T16 | FVC=0.0258×(G-B)-0.584 | 0.8103 | 0.1273 | 0.1165 | |
T平均 | FVC=0.0261×(G-B)-0.5512 | 0.7875 | 0.1473 | 0.1287 | |
T9 | FVC=0.0065×(ExG-ExR)+0.4758 | 0.9621 | 0.0777 | 0.0627 | |
T10 | FVC=0.0066×(ExG-ExR)+0.4944 | 0.9587 | 0.0619 | 0.0473 | |
T16 | FVC=0.0061×(ExG-ExR)+0.4758 | 0.9614 | 0.0652 | 0.0504 | |
T平均 | FVC=0.0064×(ExG-ExR)+0.4886 | 0.9558 | 0.0728 | 0.0629 | |
T9 | FVC=0.0115×ExG-0.0184 | 0.9278 | 0.0877 | 0.0743 | |
T10 | FVC=0.0122×ExG-0.0413 | 0.928 | 0.0918 | 0.0758 | |
T16 | FVC=0.0112×ExG-0.0246 | 0.9317 | 0.0814 | 0.0676 | |
T平均 | FVC=0.0116×ExG-0.0144 | 0.9158 | 0.0984 | 0.0876 | |
T9 | FVC=-0.0142×ExR +1.0877 | 0.9632 | 0.0730 | 0.0574 | |
T10 | FVC=-0.014×ExR +1.1103 | 0.9678 | 0.0403 | 0.0336 | |
T16 | FVC=-0.0131×ExR +1.0613 | 0.9672 | 0.0593 | 0.0515 | |
T平均 | FVC=-0.0138×ExR +1.0923 | 0.9718 | 0.0565 | 0.0448 | |
T9 | FVC=4.5952×NDI+0.3944 | 0.9537 | 0.0957 | 0.0789 | |
T10 | FVC=4.5448×NDI +0.4112 | 0.9454 | 0.0637 | 0.0442 | |
T16 | FVC=4.3043×NDI +0.3929 | 0.9464 | 0.0782 | 0.0676 | |
T平均 | FVC=4.4648×NDI +0.3992 | 0.9527 | 0.0777 | 0.0610 | |
T9 | FVC=-0.0197×(R-G)+0.419 | 0.9524 | 0.0978 | 0.0858 | |
T10 | FVC=-0.02×(R-G)+0.4412 | 0.9526 | 0.0755 | 0.0560 | |
T16 | FVC=-0.0188×(R-G)+0.4204 | 0.9658 | 0.0714 | 0.0574 | |
T平均 | FVC=-0.0196×(R-G)+0.4307 | 0.956 | 0.0787 | 0.0675 | |
T9 | FVC=-2.4952×VEG2+8.0276×VEG-5.4777 | 0.9846 | 0.0333 | 0.0223 | |
T10 | FVC=-2.8847×VEG2+9.0456×VEG-6.1127 | 0.9892 | 0.0317 | 0.0245 | |
T16 | FVC=-2.8095×VEG2+8.8284×VEG-5.9731 | 0.9846 | 0.0459 | 0.0326 | |
T平均 | FVC=-2.8405×VEG2+8.9354×VEG-6.0464 | 0.9893 | 0.0270 | 0.0223 |
时间分组 | 拟合结果 | 精度检验 | |||
---|---|---|---|---|---|
回归方程 | 决定系数R2 | RMSE | MAE | ||
T9 | FVC= -0.0277×CIVE+0.5829 | 0.9356 | 0.0859 | 0.0726 | |
T10 | FVC= -0.0292×CIVE+0.5979 | 0.9348 | 0.0861 | 0.0703 | |
T16 | FVC= -0.0269×CIVE+0.5649 | 0.9385 | 0.0782 | 0.0650 | |
T平均 | FVC= -0.0279×CIVE+0.5918 | 0.9243 | 0.0937 | 0.0828 | |
T9 | FVC=0.0249×(G-B)-0.5141 | 0.804 | 0.1140 | 0.1006 | |
T10 | FVC=0.0291×(G-B)-0.6914 | 0.8208 | 0.15392 | 0.1293 | |
T16 | FVC=0.0258×(G-B)-0.584 | 0.8103 | 0.1273 | 0.1165 | |
T平均 | FVC=0.0261×(G-B)-0.5512 | 0.7875 | 0.1473 | 0.1287 | |
T9 | FVC=0.0065×(ExG-ExR)+0.4758 | 0.9621 | 0.0777 | 0.0627 | |
T10 | FVC=0.0066×(ExG-ExR)+0.4944 | 0.9587 | 0.0619 | 0.0473 | |
T16 | FVC=0.0061×(ExG-ExR)+0.4758 | 0.9614 | 0.0652 | 0.0504 | |
T平均 | FVC=0.0064×(ExG-ExR)+0.4886 | 0.9558 | 0.0728 | 0.0629 | |
T9 | FVC=0.0115×ExG-0.0184 | 0.9278 | 0.0877 | 0.0743 | |
T10 | FVC=0.0122×ExG-0.0413 | 0.928 | 0.0918 | 0.0758 | |
T16 | FVC=0.0112×ExG-0.0246 | 0.9317 | 0.0814 | 0.0676 | |
T平均 | FVC=0.0116×ExG-0.0144 | 0.9158 | 0.0984 | 0.0876 | |
T9 | FVC=-0.0142×ExR +1.0877 | 0.9632 | 0.0730 | 0.0574 | |
T10 | FVC=-0.014×ExR +1.1103 | 0.9678 | 0.0403 | 0.0336 | |
T16 | FVC=-0.0131×ExR +1.0613 | 0.9672 | 0.0593 | 0.0515 | |
T平均 | FVC=-0.0138×ExR +1.0923 | 0.9718 | 0.0565 | 0.0448 | |
T9 | FVC=4.5952×NDI+0.3944 | 0.9537 | 0.0957 | 0.0789 | |
T10 | FVC=4.5448×NDI +0.4112 | 0.9454 | 0.0637 | 0.0442 | |
T16 | FVC=4.3043×NDI +0.3929 | 0.9464 | 0.0782 | 0.0676 | |
T平均 | FVC=4.4648×NDI +0.3992 | 0.9527 | 0.0777 | 0.0610 | |
T9 | FVC=-0.0197×(R-G)+0.419 | 0.9524 | 0.0978 | 0.0858 | |
T10 | FVC=-0.02×(R-G)+0.4412 | 0.9526 | 0.0755 | 0.0560 | |
T16 | FVC=-0.0188×(R-G)+0.4204 | 0.9658 | 0.0714 | 0.0574 | |
T平均 | FVC=-0.0196×(R-G)+0.4307 | 0.956 | 0.0787 | 0.0675 | |
T9 | FVC=-2.4952×VEG2+8.0276×VEG-5.4777 | 0.9846 | 0.0333 | 0.0223 | |
T10 | FVC=-2.8847×VEG2+9.0456×VEG-6.1127 | 0.9892 | 0.0317 | 0.0245 | |
T16 | FVC=-2.8095×VEG2+8.8284×VEG-5.9731 | 0.9846 | 0.0459 | 0.0326 | |
T平均 | FVC=-2.8405×VEG2+8.9354×VEG-6.0464 | 0.9893 | 0.0270 | 0.0223 |
[1] |
Jiapaer G, Chen X, Bao A. A comparison of methods for estimating fractional vegetation cover in arid regions[J]. Agric. For. Meteorol., 1923, 151:1698-1710.
doi: 10.1016/j.agrformet.2011.07.004 URL |
[2] | 牛亚晓, 张立元, 韩文霆, 等. 基于无人机遥感与植被指数的冬小麦覆盖度提取方法[J]. 农业机械学报, 2018, 49(4):212-221. |
[3] | 杨焕波, 赵静, 兰玉彬, 等. 基于无人机可见光遥感和阈值法的玉米植被覆盖度提取[J]. 福建农林大学学报:自然科学版, 2020, 49(2):283-288. |
[4] |
Coy André, Dale R, Michael T, et al. Increasing the Accuracy and Automation of Fractional Vegetation Cover Estimation from Digital Photographs[J]. Remote Sensing, 2016, 8(7):474.
doi: 10.3390/rs8070474 URL |
[5] |
Allen R G, Pereira L S. Estimating crop coefficients from fraction of ground cover and height[J]. Irrigation Science, 2009, 28(1):17-34.
doi: 10.1007/s00271-009-0182-z URL |
[6] | 赵静, 杨焕波, 兰玉彬, 等. 基于无人机可见光图像的夏季玉米植被覆盖度提取方法[J]. 农业机械学报, 2019, 50(5):232-240. |
[7] | 李翠娜, 张雪芬, 余正泓, 等. 基于图像提取技术计算夏玉米覆盖度和反演叶面积指数的精度评价[J]. 中国农业气象, 2016, 37(4):479-491. |
[8] | 张东东. 在线式图像的甘蔗长势无损监测研究[D]. 杭州:浙江大学, 2017. |
[9] | 潘卫华, 陈家金, 李丽纯, 等. 福建罗源湾互花米草的遥感动态监测[J]. 中国农学通报, 2009, 25(13):216-219. |
[10] | 王三, 赵伟, 黄春芳, 等. 基于遥感的重庆市土地利用动态变化研究[J]. 中国农学通报, 2010, 26(2):250-256. |
[11] | 贾勤学, 张玮, 李建林, 等. 基于遥感技术的耕地面积动态监测研究[J]. 中国农学通报, 2006(7):530-534. |
[12] | 张喜旺, 吴炳方. 基于中高分辨率遥感的植被覆盖度时相变换方法[J]. 生态学报, 2015, 35(4):1155-1164. |
[13] | 唐亮, 何明珠, 许华, 等. 基于无人机低空遥感的荒漠植被覆盖度与归一化植被指数验证及其对水热梯度的响应[J]. 应用生态学报, 2020, 31(1):35-44. |
[14] | 吴焕丽, 崔可旺, 张馨, 等. 基于改进K-means图像分割算法的细叶作物覆盖度提取[J]. 农业机械学报, 2019, 50(1):42-50. |
[15] |
Woebbecke D M, Meyer G E, Bargen K V, et al. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions[J]. Transactions of the Asae, 1995, 38(1):259-269.
doi: 10.13031/2013.27838 URL |
[16] |
A.J. Pérez, F. López, J.V. Benlloch, et al. Colour and shape analysis techniques for weed detection in cereal fields[J]. Computers and Electronics in Agriculture, 2000, 25(3):197-212.
doi: 10.1016/S0168-1699(99)00068-X URL |
[17] | Kataoka T, Kaneko T, Okamoto H, et al. Crop growth estimation system using machine vision[C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2003. |
[18] |
Dongdong Z, Mansaray L R, Hongwei J, et al. A universal estimation model of fractional vegetation cover for different crops based on time series digital photographs[J]. Computers and Electronics in Agriculture, 2018, 151:93-103.
doi: 10.1016/j.compag.2018.05.030 URL |
[19] |
Woebbecke D M, Meyer G E, Von Bargen K, et al. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions[J]. Transactions of the Asae, 1995, 38(1):259-269.
doi: 10.13031/2013.27838 URL |
[20] |
George E M, João C N. Verification of color vegetation indices for automated crop imaging applications[J]. Computers and Electronics in Agriculture, 2008, 63(2):282-293.
doi: 10.1016/j.compag.2008.03.009 URL |
[21] |
Hague T, Tillett N D, Wheeler H. Automated Crop and Weed Monitoring in Widely Spaced Cereals[J]. Precision Agriculture, 2006, 7(1):21-32.
doi: 10.1007/s11119-005-6787-1 URL |
[22] | 贾建华, 胡勇, 刘良云. 青藏高原数字照片植被覆盖度自动算法与应用[J]. 地球信息科学学报, 2010, 12(06):880-885. |
[23] | 章文波, 刘宝元, 吴敬东. 小区植被覆盖度动态快速测量方法研究[J]. 水土保持通报, 2001, 21(6):60-63. |
[24] |
Hamuda E, Glavin M, Jones E. A survey of image processing techniques for plant extraction and segmentation in the field[J]. Computers and Electronics in Agriculture, 2016, 125:184-199.
doi: 10.1016/j.compag.2016.04.024 URL |
[25] |
Ye M, Cao Z, Yu Z, et al. Crop feature extraction from images with probabilistic superpixel Markov random field[J]. Computers and Electronics in Agriculture, 2015, 114:247-260.
doi: 10.1016/j.compag.2015.04.010 URL |
[1] | JI Kun, WANG Bin, ZHAO Bowen, XUE Hao, WU Jianmin, ZHU Xiaojian, WANG Yixin, ZHAO Haijun, HAN Zanping. Different Maize Germplasm Materials: Grey Correlation Analysis of Plant and Ear-kernel Traits [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 27-32. |
[2] | HONG Bo, ZHANG Ze, ZHANG Qiang, MA Yiru, YI Xiang, LV Xin. The Nitrogen Content in Cotton Leaves: Estimation Based on Digital Image [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 49-55. |
[3] | ZHOU Xiaohong. The Crop Yield Estimation Model Based on Multiple Regression Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 152-156. |
[4] | FU Yanyan, LI Yunfeng, HAN Dong, MA Shuqing. Water Surplus and Deficit of Maize Growing Season and Its Effect on Yield in Major Grain Producing Areas of Jilin Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 99-105. |
[5] | ZHANG Hongfen, YANG Lijie, ZHAO Yujuan, ZHANG Feng. Strong Cool Summer in East Gansu in 2020: Climate Characteristics and the Impact on Agriculture [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 117-123. |
[6] | LI Rui, SHANG Xiao, SHANG Chunshu, CHANG Lifang, YAN Lei, BAI Jianrong. 224 Maize Inbred Lines from Shanxi: Genetic Structure and Genetic Relationships Based on SSR Markers by Fluorescence Detection [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 9-16. |
[7] | ZHOU Zhongwen, ZHANG Moucao, LIU Ying, LIU Donghui, ZHANG Hongni, ZHANG Junlin, HAN Bo. The Influence of Meteorological Factors on Grain Filling Speed of Spring Maize in the Plateau Area of Eastern Gansu [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 94-98. |
[8] | WANG Hui, LU Xinhai, DU Meifang, ZHANG Qi. Spatio-temporal Characteristics of Extreme Heat During Summer Maize Growing Season in Haihe Plain from 1960 to 2019 [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 62-68. |
[9] | SUN Yanming, HUANG Shaohui, LIU Ketong, YANG Yunma, YANG Junfang, XING Suli, JIA Liangliang. Effects of Soil Fertility Difference on Summer Maize Yield in Piedmont Plain and Low Plain in Central and Southern Hebei [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 35-42. |
[10] | HU Xuechun, XIE Wenyan, MA Xiaonan, ZHOU Huaiping, YANG Zhenxing, LIU Zhiping. Effects of Long-term Straw Returning on Organic Carbon and Carbon Pool Management Index in Dryland Maize Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 8-13. |
[11] | JIANG Jufang, YANG Hua, HU Wenqing, WEI Yuguo. Effects of Continuous High Temperature and Drought Stress on the Growth of Spring Maize [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 63-68. |
[12] | SONG Yingbo, WANG Nannan, ZHANG Hongquan, FAN Weimin, LI Yu, MENG Fanxiang, LI Candong, CHEN Qingshan. The Application of Excel VBA Array in the Design of Matching Test List for Maize Inbred Lines [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 106-110. |
[13] | ZHANG Huimin, BAO Guangling, ZHOU Xiaotian, GAO Linlin, HU Hongxiang, MA Youhua. Safety Assessment of Heavy Metals in Specific Crops of Strictly Controlled Farmland [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 52-58. |
[14] | ZHU Xixia, ZHENG Yuzhen, WANG Haihong, HUANG Bao, PING Xishuan, LIU Tianxue, ZHAO Xia, LI Yuzhen. Different Row Spacing and Reducing Nitrogen Application in Soybean-Maize Intercropping Under Mechanization: Effects on Crop Yield and Photosynthetic Characteristics of Soybean [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 16-21. |
[15] | XIE Wen, HUO Chuan, PENG Chaoying, HUO Shiping. QTL of Kernel Yield of Maize and Its Components’ Traits: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 8-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||