Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (29): 99-106.doi: 10.11924/j.issn.1000-6850.casb2020-0789
Previous Articles Next Articles
Li Linrong(), Feng Jianlu, Liu Miaomiao, Mei Hao, Kang Zhenye, Cai Qingnian(
)
Received:
2020-12-14
Revised:
2021-04-03
Online:
2021-10-15
Published:
2021-10-29
Contact:
Cai Qingnian
E-mail:869630636@qq.com;caiqn@cau.edu.cn
CLC Number:
Li Linrong, Feng Jianlu, Liu Miaomiao, Mei Hao, Kang Zhenye, Cai Qingnian. Effect of Crop Planting Patterns on Soil Microorganisms and Crop Pests in Farmland[J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 99-106.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0789
[1] |
Liu N, Shao C, Sun H, et al. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime[J]. Geoderma, 2020, 363:114155.doi: 10.1016/j.geoderma.2019.114155.
doi: 10.1016/j.geoderma.2019.114155 URL |
[2] | Hautbergue T, Jamin E L, Debrauwer L, et al. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites[J]. Nature Product Report, 2018, 35(2):147-173. |
[3] |
Qin S, Yeboah S, Cao L, et al. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield[J]. PLoS One, 2017, 12(5):175934.doi: 10.1371/journal.pone.0175934.
doi: 10.1371/journal.pone.0175934 |
[4] |
Muhammad I R, Liyakat H M, Tanvir S, et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils[J]. Microbiological Research, 2016, 183:26-41.
doi: 10.1016/j.micres.2015.11.007 pmid: 26805616 |
[5] |
Dodd Ian C, Ruiz-Lozano J M. Microbial enhancement of crop resource use efficiency[J]. Current opinion in biotechnology, 2012, 23(2):236-242.
doi: 10.1016/j.copbio.2011.09.005 pmid: 21982722 |
[6] |
Rashid M H, Chung Y R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes[J]. Frontiers in plant science, 2017, 8:1816.doi: 10.3389/fpls.2017.01816.
doi: 10.3389/fpls.2017.01816 URL |
[7] |
Chen X L, Henriksen T M, Svensson K, et al. Long-term effects of agricultural production systems on structure and function of the soil microbial community[J]. Applied Soil Ecology, 2020, 147:103387.doi: 10.1016/j.apsoil.2019.103387.
doi: 10.1016/j.apsoil.2019.103387 URL |
[8] | Li X, Lewis E E, Liu Q, et al. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat[J]. Scientific reports, 2016, 6(1):47-66. |
[9] | 徐雪雪. 基于高通量测序的马铃薯沟垄覆膜连作土壤微生物多样性分析[D]. 兰州:甘肃农业大学, 2016. |
[10] |
Tian L, Shi S H, Ma L, et al. Community structures of the rhizomicrobiomes of cultivated and wild soybeans in their continuous cropping[J]. Microbiological Research, 2020, 232:126390.doi: 10.1016/j.micres.2019.126390.
doi: S0944-5013(19)30931-0 pmid: 31855689 |
[11] |
Li Y, Ying Y X, Zhao DY, et al. Influence of allelochemicals on microbial community in ginseng cultivating soil[J]. Chinese Herbal Medicines, 2014, 6(4):313-318.
doi: 10.1016/S1674-6384(14)60047-2 URL |
[12] |
Liu Z X, Liu J J, Yu Z H, et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition[J]. Soil and Tillage Research, 2020, 197:104503.doi: 10.1016/j.still.2019.104503.
doi: 10.1016/j.still.2019.104503 URL |
[13] | Fageria N K, Nascente A S. Management of soil acidity of South American soils for sustainable crop production[J]. Advances in Agronomy, 2014, 128:221-275. |
[14] | 陈立杰, 朱艳, 刘彬, 等. 连作和轮作对大豆胞囊线虫群体数量及土壤线虫群落结构的影响[J]. 植物保护学报, 2007(4):347-352. |
[15] | 黄玉茜, 刘欣宇, 林英, 等. 辽宁风沙土区连作年限对花生植株性状、产量及主要病害的影响[J]. 沈阳农业大学学报, 2018, 49(4):459-464. |
[16] | 唐朝辉, 郭峰, 张佳蕾, 等. 花生连作障碍发生机理及其缓解对策研究进展[J]. 花生学报, 2019, 48(1):66-70. |
[17] | 胡颖慧, 时新瑞, 李玉梅, 等. 秸秆深翻和免耕覆盖对玉米土传病虫害及产量的影响[J]. 黑龙江农业科学, 2019(5):60-63. |
[18] | 李海珀. 马铃薯主要病虫害综合防治技术策略探析[J]. 种子科技, 2020, 38(3):78-79. |
[19] | Valenzuela-Soto J H, Estrada-Hernández M G, Ibarra-Laclette E, et al. Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development[J]. Planta, 2010, 22:397-410. |
[20] |
Castellazzi M S, Wood G A, Burgess P J, et al. A systematic representation of crop rotations[J]. Agricultural Systems, 2008, 97(1):26-33.
doi: 10.1016/j.agsy.2007.10.006 URL |
[21] |
Bouffaud M L, Poirier M A, Muller D, et al. Root microbiome relates to plant host evolution in maize and other Poaceae[J]. Environmental microbiology, 2014, 16(9):2804-2814.
doi: 10.1111/emi.2014.16.issue-9 URL |
[22] |
Zhou Y, Zhu H, Fu S, et al. Variation in soil microbial community structure associated with different legume species is greater than that associated with different grass species[J]. Frontiers in microbiology, 2017, 8:1007.doi: 10.3389/fmicb.2017.01007.
doi: 10.3389/fmicb.2017.01007 URL |
[23] |
Hartmann M, Frey B, Mayer J, et al. Distinct soil microbial diversity under long-term organic and conventional farming[J]. The ISME journal, 2015, 9(5):1177-1194.
doi: 10.1038/ismej.2014.210 URL |
[24] |
Ai C, Zhang S, Zhang X, et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation[J]. Geoderma, 2018, 319:156-166.
doi: 10.1016/j.geoderma.2018.01.010 URL |
[25] |
Zhang B, Li Y, Ren T, et al. Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil[J]. Biology and Fertility of Soils, 2014, 50(7):1077-1085.
doi: 10.1007/s00374-014-0929-4 URL |
[26] |
Henriksen T.M., Breland T.A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J]. Soil Biology and Biochemistry, 1999, 31(8):1121-1134.
doi: 10.1016/S0038-0717(99)00030-9 URL |
[27] | 董宇飞, 吕相漳, 张自坤, 等. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9):1485-1492. |
[28] |
Li X G, Ding C F, Zhang T L, et al. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing[J]. Soil Biology and Biochemistry, 2014, 72:11-18.
doi: 10.1016/j.soilbio.2014.01.019 URL |
[29] | 姚小东, 李孝刚, 丁昌峰, 等. 连作和轮作模式下花生土壤微生物群落不同微域分布特征[J]. 土壤学报, 2019, 56(4):975-985. |
[30] | 赵索. 蔬菜不同轮作方式对甜瓜病害的影响[J]. 安徽农学通报, 2014, 20(6):66-68. |
[31] | 刘芊, 康树立, 廖伯寿, 等. 2018—2019年花生-粮棉轮作制度下病害种类和消长规律调查[J]. 农业科技通讯, 2020(8):123-125,128. |
[32] | 张海斌, 蒙美莲, 刘坤雨, 等. 不同轮作模式对马铃薯干物质积累、病害发生及产量的影响[J]. 作物杂志, 2019(4):170-175. |
[33] | 柴继宽. 轮作和连作对燕麦产量、品质、主要病虫害及土壤肥力的影响[D]. 甘肃兰州:甘肃农业大学, 2012. |
[34] | Heinen R, van der Sluijs M, Biere A, et al. Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects[J]. Journl of Ecology, 2018, 106(3):1217-1229. |
[35] |
Nozomu S, Hossein M K, Masaru N, et al. Metabolome analysis identified okaramines in the soybean rhizosphere as a legacy of hairy vetch[J]. Frontiers in genetics, 2020, 11:114.doi: 10.3389/fgene.2020.00114.
doi: 10.3389/fgene.2020.00114 URL |
[36] |
Christine S, Emily A M. Spatiotemporal changes in landscape crop composition differently affect density and seasonal variability of pests, parasitoids and biological pest control in cabbage[J]. Agriculture, Ecosystems and Environment, 2020, 301:107051.doi: 10.1016/j.agee.2020.107051.
doi: 10.1016/j.agee.2020.107051 URL |
[37] | 徐向平. 浅析大豆覆膜技术[J]. 现代农业研究, 2016(2):21. |
[38] |
Kader M A, Senge M, Mojid M A, et al. Recent advances in mulching materials and methods for modifying soil environment[J]. Soil and Tillage Research, 2017, 168:155-166.
doi: 10.1016/j.still.2017.01.001 URL |
[39] |
Johnson J M, Hough-Goldstein J A, Vangessel M J. Effects of straw mulch on pest insects, predators, and weeds in watermelons and potatoes[J]. Environmental Entomology, 2004, 33(6):1632-1643.
doi: 10.1603/0046-225X-33.6.1632 URL |
[40] | Larentzaki E, Plate J, Nault B, et al. Impact of straw mulch on populations of onion thrips (Thysanoptera: Thripidae) in onion[J]. Environmental Entomology, 2008, 101(4):1317-1324. |
[41] |
Jamieson L E, Stevens P S. The effect of mulching on adult emergence of Kelly’s citrus thrips (Pezothrips kellyanus)[J]. New Zealand Plant Protection, 2006, 59:42-46.
doi: 10.30843/nzpp.2006.59 URL |
[42] |
Castilho R C, Duarte V S, Moraes G J, et al. Two-spotted spider mite and its natural enemies on strawberry grown as protected and unprotected crops in Norway and Brazil[J]. Experimental and Applied Acarology, 2015, 66(4):509-528.
doi: 10.1007/s10493-015-9913-4 pmid: 25948508 |
[43] |
Esteca F C N, Rodrigues L R, Moraes G J, et al. Mulching with coffee husk and pulp in strawberry affects edaphic predatory mite and spider mite densities[J]. Experimental and Applied Acarology, 2018, 76(6):161-183.
doi: 10.1007/s10493-018-0309-0 URL |
[44] | 沈鹏飞. 不同覆盖措施对渭北苹果园土壤理化性质及微生物群落结构的影响[D]. 陕西咸阳:西北农林科技大学, 2019. |
[45] | 张红娟, 薛泉宏. 覆盖模式及施氮量对小麦休闲期土壤微生物数量的影响[J]. 西北农林科技大学学报:自然科学版, 2010, 38(6):220-226. |
[46] |
Compant S, Clement C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry, 2010, 42(5):669-678.
doi: 10.1016/j.soilbio.2009.11.024 URL |
[47] | 李长帅, 张海辉. 蚕豆覆膜种植对草害防治及产量的影响[J]. 农业与技术, 2018, 38(5):86-88. |
[48] | 杨林, 朱莉, 聂紫瑾, 等. 覆膜种植对北京山区茶用菊花生长及抑草效果的影响[J]. 安徽农业科学, 2016, 44(8):53-54,173. |
[49] | 彭素华, 张歌颂. 辣椒地膜覆盖栽培的作用及栽培技术[J]. 现代农业科技, 2019(15):79-80. |
[50] | 赵欣, 林超文, 徐明桥, 等. 水稻覆膜处理对稻田杂草多样性影响的研究[J]. 生物多样性, 2009, 17(2):195-200. |
[51] |
Zitnick-Anderson K, del Río Mendoza L E, Forster S, et al. Associations among the communities of soil-borne pathogens, soil edaphic properties and disease incidence in the field pea root rot complex[J]. Plant and Soil, 2020, 457:339-354.
doi: 10.1007/s11104-020-04745-4 URL |
[52] | 李树林, 赵士杰, 郑红丽. VA菌根真菌和覆膜对茄子黄萎病及茄根区微生物量的影响[J]. 内蒙古农业大学学报, 2005(1):1-4. |
[53] | 陈洪江, 叶巍, 鲁文娟, 等. 不同播种期、覆盖方式对秋马铃薯产量及病害的影响[J]. 中国果菜, 2007(2):29. |
[54] | 韩志华. 不同种类地膜覆盖对马铃薯Y病毒病的影响[J]. 安徽农业科学, 2018, 46(8):140-141,144. |
[55] | Hayashi H, Takiuchi K, Murao S, et al. Structure and insecticidal activity of new indole alkaloids, okaramines A and B, from Penicillium simplicissimum AK-40[J]. Agricultural and Biological Chemistry, 1989, 53(2):461-469. |
[56] | 梁继农. 大白菜地膜覆盖种植对其三大病害的影响[J]. 江苏农业科学, 1988(9):26-28. |
[57] | 周成刚, 颜琴, 周婷婷. 淮北地区春播花生地膜覆盖高产栽培技术[J]. 上海农业科技, 2020(4):93-94. |
[58] |
Wang H H, Guo Q C, Li X, et al. Effects of long-term no-tillage with different straw mulching frequencies on soil microbial community and the abundances of two soil-borne pathogens[J]. Applied Soil Ecology, 2020, 148:103488.doi: 10.1016/j.apsoil.2019.103488.
doi: 10.1016/j.apsoil.2019.103488 URL |
[59] |
Vorsah R V, Dingha B N, Gyawaly S, et al. Organic mulch increases insect herbivory by the flea beetle species, Disonycha glabrata, on Amaranthus spp.[J]. Insects, 2020, 11(3):162.doi: 10.3390/insects11030162.
doi: 10.3390/insects11030162 URL |
[60] |
Neves Esteca F C, Trandem N, Klingen I, et al. Cereal straw mulching in strawberry-a facilitator of plant visits by edaphic predatory mites at night?[J]. Diversity, 2020, 12(6):242.doi: 10.3390/d12060242.
doi: 10.3390/d12060242 URL |
[61] |
Simmons A M, Kousik C S, Levi A. Combining reflective mulch and host plant resistance for sweetpotato whitefly (Hemiptera: Aleyrodidae) management in watermelon[J]. Crop Protection, 2010, 29(8):898-902.
doi: 10.1016/j.cropro.2010.04.003 URL |
[62] |
Yin W, Yu A, Chai Q, et al. Wheat and maize relay-planting with straw covering increases water use efficiency up to 46%[J]. Agronomy for Sustainable Development, 2015, 35(2):815-825.
doi: 10.1007/s13593-015-0286-1 URL |
[63] |
Wang Y P, Li X G, Zhu J, et al. Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China[J]. Agricultural and Forest Meteorology, 2016, 220:160-169.
doi: 10.1016/j.agrformet.2016.01.142 URL |
[64] |
Liu X, Hu G Q, He H B, et al. Linking microbial immobilization of fertilizer nitrogen to in situ turnover of soil microbial residues in an agro-ecosystem[J]. Agriculture,Ecosystems and Environment, 2016, 229:40-47.
doi: 10.1016/j.agee.2016.05.019 URL |
[65] |
Dukare A S, Prasanna R, Dubey S C, et al. Evaluating novel microbe amended composts as biocontrol agents in tomato[J]. Crop Protection, 2011, 30:436-442.
doi: 10.1016/j.cropro.2010.12.017 URL |
[66] |
Zhu Y, Lv G C, Chen Y L, et al. Inoculation of arbuscular mycorrhizal fungi with plastic mulching in rainfed wheat: A promising farming strategy[J]. Field Crops Research, 2017, 204:229-241.
doi: 10.1016/j.fcr.2016.11.005 URL |
[67] |
Mehmood M A, Zhao H Z, Cheng J S, et al. Sclerotia of a phytopathogenic fungus restrict microbial diversity and improve soil health by suppressing other pathogens and enriching beneficial microorganisms[J]. Journal of Environmental Management, 2020, 259:109857.doi: 10.1016/j.jenvman.2019.109857.
doi: S0301-4797(19)31575-0 pmid: 32072956 |
[1] | SUN Ge, JIE Weiguang, HU Wei, ZHANG Yingzhi, QIAO Wei, WEI Lina, JIANG Yitong, BAI Li. Effects of Mycorrhizal Fungi and Mycorrhizal Helper Bacteria on Crop Development: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 88-92. |
[2] | ZHOU Xiaohong. The Crop Yield Estimation Model Based on Multiple Regression Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 152-156. |
[3] | QIANG Shengjun, LIU Yurong, LI Gang. Influence and Correction of Solvent Standard and Matrix Standard on Pesticide Residue Detection Results [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 99-106. |
[4] | LUO Zhiming, QIN Wei, YIN Jiong, LI Yinhu, ZHANG Rongyue, LI Jun. Tolerance of Sugarcane Germplasm to Sugarcane Thrips [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 107-112. |
[5] | ZHANG Junwei, ZHANG Xiaohu, XU Yucong. Effect of South Schisandra chinensis Ester B-Nisin-KGM Compound Coating Agent on Fresh Meat Preservation [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 120-129. |
[6] | WANG Yan, XU Meimei, SHAN Lianhui, GOU Huan, TONG Yujia, AN Xinying. Current Status of Research on Major Plant Epidemic Based on Bibliometrics and Patentometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 144-154. |
[7] | XU Lingqing, LI Jiajia, CHANG Xiao, ZHANG Yunlong, LIU Dali. The Mechanism of Soil Nitrogen Mineralization: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 97-101. |
[8] | LIU Dong, LIU Ruijin. Development Strategy of Tropical Crop Industry in China Based on SWOT- PEST Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 139-147. |
[9] | WANG Zhiqiang, YANG Jianfeng, SHI Tianchi. Copper Content Characteristics of Main Grain Crops and Their Influencing Factors in Shizuishan of Ningxia [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 45-54. |
[10] | CHEN Dandan, WAN Jianchun, LIAN Qi, WANG Jianxiong, WANG Dong, HONG Ting, YANG Yisheng. Research Progress of Pesticide Residues in Chinese Herbal Medicines [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 125-135. |
[11] | WANG Lixia, YIN Xiaomin, LIU Yongxia, LIAN Zihao, WANG Bizun, HE Yingdui. Change Characteristics of Microbial Community in the Rhizosphere of Papaya Under Papaya-Leek Intercropping [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 66-76. |
[12] | WANG Qing, FANG Wensheng, LI Yuan, WANG Qiuxia, YAN Dongdong, CAO Aocheng. Advances in New Nematicides and Their Action Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 100-107. |
[13] | MA Yuemei, WANG Rongdang. Indexation Measurement of the Advantage of Main Grain Crops in Yunnan Province Based on the Comparative Advantage Theory [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 141-150. |
[14] | ZHANG Huimin, BAO Guangling, ZHOU Xiaotian, GAO Linlin, HU Hongxiang, MA Youhua. Safety Assessment of Heavy Metals in Specific Crops of Strictly Controlled Farmland [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 52-58. |
[15] | ZHU Xixia, ZHENG Yuzhen, WANG Haihong, HUANG Bao, PING Xishuan, LIU Tianxue, ZHAO Xia, LI Yuzhen. Different Row Spacing and Reducing Nitrogen Application in Soybean-Maize Intercropping Under Mechanization: Effects on Crop Yield and Photosynthetic Characteristics of Soybean [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 16-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||