Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (32): 25-33.doi: 10.11924/j.issn.1000-6850.casb2021-0107
Special Issue: 生物技术
Previous Articles Next Articles
Li Ting1,2(), Wang Yue1,2, Liu Zhongshan3, Liu Qi3, Xu Henan3, Li Chongwei1,2(
)
Received:
2021-02-01
Revised:
2021-04-13
Online:
2021-11-15
Published:
2022-01-07
Contact:
Li Chongwei
E-mail:761983600@qq.com;chongweili@126.com
CLC Number:
Li Ting, Wang Yue, Liu Zhongshan, Liu Qi, Xu Henan, Li Chongwei. A Novel Low Temperature Cellulose-degrading Strain Streptomyces azureus and Its Enzymatic Production Condition Optimization[J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 25-33.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0107
ID | D/d | 纤维素酶活力/(U/mL) |
---|---|---|
T13-3T | 4.64±0.22b | 21.12 |
N1-6L | 3.00±0.16e | 11.47 |
T23-B | 5.40±0.37a | 28.34 |
T13-5 | 4.20±0.24c | 18.45 |
T23-3 | 3.73±0.19d | 21.67 |
N4-3L | 3.20±0.26e | 14.32 |
T23-3L | 3.00±0.21e | 15.67 |
ID | D/d | 纤维素酶活力/(U/mL) |
---|---|---|
T13-3T | 4.64±0.22b | 21.12 |
N1-6L | 3.00±0.16e | 11.47 |
T23-B | 5.40±0.37a | 28.34 |
T13-5 | 4.20±0.24c | 18.45 |
T23-3 | 3.73±0.19d | 21.67 |
N4-3L | 3.20±0.26e | 14.32 |
T23-3L | 3.00±0.21e | 15.67 |
试验序号 | A.pH | B.氮源浓度/(g/mL) | C.碳源浓度/(g/mL) | 纤维素酶活力/(U/mL) |
---|---|---|---|---|
1 | 0 | 0 | 0 | 124.12±1.12 |
2 | 0 | 1 | 1 | 103.71±0.89 |
3 | 1 | 0 | 1 | 112.43±0.76 |
4 | -1 | -1 | 0 | 97.85±0.98 |
5 | 0 | 0 | 0 | 120.19±0.83 |
6 | 0 | -1 | -1 | 105.17±0.40 |
7 | -1 | 0 | 1 | 101.49±0.91 |
8 | 0 | 1 | -1 | 80.08±0.62 |
9 | 1 | 1 | 0 | 93.27±0.76 |
10 | 1 | -1 | 0 | 112.19±0.89 |
11 | -1 | 0 | -1 | 86.39±0.33 |
12 | 1 | 0 | -1 | 95.19±1.09 |
13 | 0 | 0 | 0 | 119.14±0.82 |
14 | 0 | 0 | 0 | 118.33±1.46 |
15 | -1 | 1 | 0 | 87.27±0.93 |
16 | 0 | 0 | 0 | 120.74±0.88 |
17 | 0 | -1 | 1 | 108.98±1.07 |
试验序号 | A.pH | B.氮源浓度/(g/mL) | C.碳源浓度/(g/mL) | 纤维素酶活力/(U/mL) |
---|---|---|---|---|
1 | 0 | 0 | 0 | 124.12±1.12 |
2 | 0 | 1 | 1 | 103.71±0.89 |
3 | 1 | 0 | 1 | 112.43±0.76 |
4 | -1 | -1 | 0 | 97.85±0.98 |
5 | 0 | 0 | 0 | 120.19±0.83 |
6 | 0 | -1 | -1 | 105.17±0.40 |
7 | -1 | 0 | 1 | 101.49±0.91 |
8 | 0 | 1 | -1 | 80.08±0.62 |
9 | 1 | 1 | 0 | 93.27±0.76 |
10 | 1 | -1 | 0 | 112.19±0.89 |
11 | -1 | 0 | -1 | 86.39±0.33 |
12 | 1 | 0 | -1 | 95.19±1.09 |
13 | 0 | 0 | 0 | 119.14±0.82 |
14 | 0 | 0 | 0 | 118.33±1.46 |
15 | -1 | 1 | 0 | 87.27±0.93 |
16 | 0 | 0 | 0 | 120.74±0.88 |
17 | 0 | -1 | 1 | 108.98±1.07 |
[1] |
Wen Y C, Kit W C, Cheng F L, et al. Sustainable utilization of biowaste compost for renewable energy and soil amendments[J]. Environmental Pollution, 2020, 267:115662.
doi: 10.1016/j.envpol.2020.115662 URL |
[2] |
Zheng J X, Liu J B, Han S H, et al. N2O emission factors of full-scale animal manure windrow composting in cold and warm seasons[J]. Bioresource technology, 2020, 316:123905.
doi: 10.1016/j.biortech.2020.123905 URL |
[3] |
Chen X M, Cheng W T, Li S Z, et al. The “quality” and “quantity” of microbial species drive the degradation of cellulose during composting[J]. Bioresource Technology, 2021, 320(PB):124425.
doi: 10.1016/j.biortech.2020.124425 URL |
[4] |
Zhao L, Gu W M, Shao L M, et al. Sludge Bio-drying Process at Low Ambient Temperature: Effect of Bulking Agent Particle Size and Controlled Temperature[J]. Drying Technology, 2012, 30(10):1037-1044.
doi: 10.1080/07373937.2012.665113 URL |
[5] |
Strom P F. Effect of temperature on bacterial species diversity in thermophilic solid-waste composting[J]. Applied and environmental microbiology, 1985, 50(4):899-905.
doi: 10.1128/aem.50.4.899-905.1985 pmid: 4083885 |
[6] |
Yousif A Y, Li T Z, Xi C, et al. Role of psychrotrophic fungal strains in accelerating and enhancing the maturity of pig manure composting under low-temperature conditions[J]. Bioresource Technology, 2021, 320(PB):124402.
doi: 10.1016/j.biortech.2020.124402 URL |
[7] |
Gerday C, Aittaleb M, Bentahir M, et al. Cold-adapted enzymes: from fundamentals to biotechnology[J]. Trends in Biotechnology, 2000, 18(3):103-107.
pmid: 10675897 |
[8] |
Xie X Y, Zhao Y, Sun Q H, et al. A novel method for contributing to composting start-up at low temperature by inoculatng cold-adapted microbial consortium[J]. Bioresource Technology, 2017, 238:39-47.
doi: 10.1016/j.biortech.2017.04.036 URL |
[9] |
Li C N, Li H Y, Yao T, et al. Effects of microbial inoculation on enzyme activity, available nitrogen content, and bacterial succession during pig manure composting[J]. Bioresource Technology, 2020, 306:123167.
doi: 10.1016/j.biortech.2020.123167 URL |
[10] |
Yao Y, Huang G, An C J, et al. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts[J]. Renewable and Sustainable Energy Reviews, 2020, 119:109494.
doi: 10.1016/j.rser.2019.109494 URL |
[11] |
Zhao Y, Zhao Y, Zhang Z C, et al. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management, 2017, 68:64-73.
doi: S0956-053X(17)30463-4 pmid: 28647221 |
[12] |
Wei Y Q, Wu D, Wei D, et al. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities[J]. Bioresource Technology, 2019, 271:66-74.
doi: 10.1016/j.biortech.2018.09.081 URL |
[13] |
Cuesta G, Rosana G, Abad M, et al. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents[J]. Journal of Environmental Management, 2012, 95:S280-S284.
doi: 10.1016/j.jenvman.2010.11.023 URL |
[14] | 吴静. 高产纤维素酶霉菌的筛选及纤维素酶系的分离纯化[D]. 贵阳:贵州大学, 2020. |
[15] | 沈大春. 秸秆堆肥降解菌株分离及降解稻秆效果研究[D]. 南京:南京农业大学, 2016. |
[16] |
Li F, Xie Y J, Gao X, et al. Screening of cellulose degradation bacteria from Min pigs and optimization of its cellulase production[J]. Electronic Journal of Biotechnology, 2020, 48:29-35.
doi: 10.1016/j.ejbt.2020.09.001 URL |
[17] |
Hussain A A, Mohamed S A, Hoda H A, et al. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment[J]. Journal of Genetic Engineering and Biotechnology, 2017, 15:77-85.
doi: 10.1016/j.jgeb.2017.02.007 URL |
[18] |
Kelly J, Kutscher A H, Tuoti A F. Thiostrepton, a new antibiotic: tube dilution sensitivity studies[J]. Oral Surg. Oral Med. Oral Pathol, 1959, 12:1334.
doi: 10.1016/0030-4220(59)90222-1 URL |
[19] | Dutcher J D, Vandeputt J T. A new antibiotic. II. Isolation and chemical characterization[J]. Antibiotics Annual, 1955, 3:560-561. |
[20] | Jambor W P, Steinberg B A, Suydam L O. Thiostrepton, a new antibiotic. III. In vivo studies[J]. Antibiotics Annual, 1955, 3:562-565. |
[21] | Sakihara K, Maeda J, Tashiro K, et al. Draft genome sequence of thiostrepton-producing Streptomyces azureus ATCC 14921[J]. Genome Announc, 2015, 3(5):e01183-15. |
[22] | 汪健. 硫链丝菌素Thiostrepton的优化设计及其对口腔致病菌的抗菌活性检测[D]. 上海:上海交通大学, 2019. |
[23] | 陈单丹, 段盼盼, 刘文. 以活性结构单元的突变和修饰为思路的硫链丝菌素的生物合成途径改造[J]. 中国抗生素杂志, 2017, 42(03):189-197. |
[24] | 孙晓萌, 公维丽, 李欣, 等. 降解木质素放线菌的功能组学分析及工业应用前景[J]. 中国科学:生命科学, 2017(2):201-210. |
[25] | 李欣. 中药渣堆肥微生物群落演替机制研究[D]. 包头:内蒙古科技大学, 2019. |
[26] |
Cavicchioli R, Siddiqui K S, Andrews D, et al. Low-temperature extremophiles and their applications[J]. Current Opinion in Biotechnology, 2002, 13(3):253-261.
pmid: 12180102 |
[27] |
Imran M, Anwar Z, Irshad M, et al. Optimization of cellulase production from a novel strain of Aspergillus Tubingensis IMMIS2 through response surface methodology[J]. Biocatalysis and Agricultural Biotechnology, 2017, 12:191-198.
doi: 10.1016/j.bcab.2017.10.005 URL |
[28] |
Li Q, Loman A A, Nicholas V C, et al. Leveraging pH profiles to direct enzyme production (cellulase, xylanase, polygalacturonase, pectinase, α-galactosidase, and invertase) by Aspergillus foetidus[J]. Biochemical Engineering Journal, 2018, 137:247-254.
doi: 10.1016/j.bej.2018.06.008 URL |
[29] |
Sreena, Sebastian D. Augmented cellulase production by Bacillus subtilis strain MU S1 using different statistical experimental designs[J]. Journal of Genetic Engineering and Biotechnology, 2018, 16:9-16.
doi: 10.1016/j.jgeb.2017.12.005 URL |
[30] |
Santosh K G, Kataki S, Chatterjee S, et al. Cold adaptation in bacteria with special focus on cellulase production and its potential application[J]. Journal of Cleaner Production, 2020, 258:120351.
doi: 10.1016/j.jclepro.2020.120351 URL |
[31] |
Xu K W, Zou X T, Xue Y T, et al. The impact of seasonal variations about temperature and photoperiod on the treatment of municipal wastewater by algae-bacteria system in lab-scale[J]. Algal Research, 2021, 54:102175.
doi: 10.1016/j.algal.2020.102175 URL |
[32] |
Chen L Y, Bai S Q, You M H, et al. Effect of a low temperature tolerant lactic acid bacteria inoculant on the fermentation quality and bacterial community of oat round bale silage[J]. Animal Feed Science and Technology, 2020, 269:114669.
doi: 10.1016/j.anifeedsci.2020.114669 URL |
[1] | LI Xiang, WANG Yongping, WANG Yaofeng, CHU Chunnian, SUN Xijun, KE Xiheng, ZENG Qiao. Study on the Best Composting Parameters and Fertilization Effect of Branch Organic Fertilizer [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 63-68. |
[2] | REN Xvrui, WANG Yihui, YANG Hongyu, YUAN Liang, ZHAO Yue. Resource Utilization System of Agricultural Organic Waste After Centralized Recovery and Treatment: A Case Study of Xingxian Village in Gannan County [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 74-79. |
[3] | ZENG Quan, SHI Guoying, SU Lin, YE Xuelian, HU Chunjin. Organic Fertilizer Production with Fermentation and Composting of Chicken Manure Promoted by Flammulina Chaff [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 44-50. |
[4] | NIE Xiaoyu, YU Chunjing, LU Qian, CUI Jizhe. The Effects of Microorganisms in Aerobic Composting of Crop Straw: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 76-81. |
[5] | SONG Yun, FAN Ping, WANG Min, WANG Qiang, XUE Pengfei. Comparative Analysis of Decomposition Factors of Aerobic Composting with Several Waste Substrates [J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 53-57. |
[6] | Zhao Longmei, Chen Lin, Du Dongxiao, Dong Huixin, Li Wang, Li Yuanxiao, He Wanling, Cao Pinghua. Screening, Identification and Characteristic Analysis of Cellulase-Producing Bacteria [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 83-88. |
[7] | Lu Jiawei, Wang Mingze, Wang Qi, Wei Zongyou, Zhang Yanli, Wang Feng. Effects of Different Excipients and Microbial Agents on Aerobic Composting of Sheep Manure [J]. Chinese Agricultural Science Bulletin, 2021, 37(15): 39-46. |
[8] | Wang Yue, Liu Zhongshan, Liu Qi, Xu Henan, Yuan Runze, Li Chongwei, Song Fuqiang. Co-composting of Agaric Fungus Chaff and Chicken Manure: Improving Effect on the Saline-alkali Soil [J]. Chinese Agricultural Science Bulletin, 2020, 36(26): 77-82. |
[9] | Huang Yanyan, Yang Xu, Yang Hongzhu, Bei Meirong, Cha Zhengzao, Luo Wei, Lin Qinghuo. C/N Ratio: Effect on Composting of Mixtures of Chicken Manure and Bagasse in Tropical Areas [J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 61-68. |
[10] | . Microbial Inoculum Affects the Industrial Composting of Chicken Manure and Rice Husk [J]. Chinese Agricultural Science Bulletin, 2019, 35(35): 87-93. |
[11] | . Hydrolysate of Burdock Root: Preparation and Its Effect on Melon Growth and Quality [J]. Chinese Agricultural Science Bulletin, 2019, 35(30): 49-57. |
[12] | 刘 超,,,,,李 荣 and . Composting Efficiency of Typical Animal Manures Amended with Mushroom Dregs [J]. Chinese Agricultural Science Bulletin, 2018, 34(21): 84-90. |
[13] | . Concentrations of Bacillus subtilis Affecting Rapid Composting of Slaughtering Waste at High Temperature [J]. Chinese Agricultural Science Bulletin, 2018, 34(1): 98-102. |
[14] | . Nitrogen Transformation and Nitrogen Conservation in Composting: Research Progress [J]. Chinese Agricultural Science Bulletin, 2017, 33(27): 26-32. |
[15] | 张发宝,李苹 and 付弘婷. Effect of Two Different Magnesium Salt on Nitrogen Fixing in High-temperature Phase of Cattle Manure Composting [J]. Chinese Agricultural Science Bulletin, 2017, 33(27): 19-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||