
Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (36): 111-118.doi: 10.11924/j.issn.1000-6850.casb2021-0690
Previous Articles Next Articles
					
													ZHOU Wanting1,2( ), WANG Man1,2, ZHOU Xiang1,2, GAO Zhuo1,2,3, LI Jiajia1,2, LI Wangsheng1,2, LI Siqi1,2, WANG Xueqian1,2, WANG Luhong1,2, LIU Dali1,2(
), WANG Man1,2, ZHOU Xiang1,2, GAO Zhuo1,2,3, LI Jiajia1,2, LI Wangsheng1,2, LI Siqi1,2, WANG Xueqian1,2, WANG Luhong1,2, LIU Dali1,2( )
)
												  
						
						
						
					
				
Received:2021-07-14
															
							
																	Revised:2021-08-13
															
							
															
							
																	Online:2021-12-25
															
							
																	Published:2022-02-15
															
						Contact:
								LIU Dali   
																	E-mail:905428635@qq.com;daliliu_hlju@163.com
																					CLC Number:
ZHOU Wanting, WANG Man, ZHOU Xiang, GAO Zhuo, LI Jiajia, LI Wangsheng, LI Siqi, WANG Xueqian, WANG Luhong, LIU Dali. BvGSTU9 Gene in Sugar Beet: Bioinformatics and Expression Analysis Under Cadmium Stress[J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 111-118.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0690
| [1] | SYTAR O, KUMAR A, LATOWSKI D, et al. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants[J]. Acta physiologiae plantarum, 2013, 35(4):985-999. doi: 10.1007/s11738-012-1169-6 URL | 
| [2] | 史淑芝, 程大友, 马凤鸣, 等. 生物质能源作物——能源甜菜的开发利用[J]. 中国农学通报, 2007(11):416-419. | 
| [3] | THEURER J C, DONEY D L, SMITH G A, et al. Potential ethanol production from sugar beet and fodder beet[J]. Crop science, 1987, 27(5):1034-1040. doi: 10.2135/cropsci1987.0011183X002700050042x URL | 
| [4] | TOPPI L, GABBRIELLI R. Response to cadmium in higher plants[J]. Environmental & experimental botany, 1999, 41(2):105-130. | 
| [5] | LIU D, AN Z, MAO Z, et al. Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination[J]. Plos one, 2015, 10(6):e0128824. doi: 10.1371/journal.pone.0128824 URL | 
| [6] | AHMADI S, GHAFOURI H, TARAZI S, et al. Cloning, purification and biochemical characterization of two glutathione S-transferase isoforms from Rutilus frisii kutum[J]. Protein expression and purification, 2021, 179:105800. doi: 10.1016/j.pep.2020.105800 URL | 
| [7] | EDWARDS R, DIXON D P, WALBOT V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health[J]. Trends in plant science, 2000, 5(5):193-198. doi: 10.1016/S1360-1385(00)01601-0 URL | 
| [8] | ADAMIS P D B, GOMES D S, PINTO M L C C, et al. The role of glutathione transferases in cadmium stress[J]. Toxicol lett, 2004(154):81-88. | 
| [9] | MCGONIGLE B. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize[J]. Plant physiology, 2000, 124(3):1105-1120. doi: 10.1104/pp.124.3.1105 URL | 
| [10] | YU T, LI Y S, CHEN X F, et al. Transgenic tobacco plants overexpressing cotton glutathione S-transferase (GST) show enhanced resistance to methyl viologen[J]. Journal of plant physiology, 2003, 160(11):1305-1311. doi: 10.1078/0176-1617-01205 URL | 
| [11] | ÁGNES GALLÉ. J CSISZÁR, SECENJI M,, et al. Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit[J]. Journal of plant physiology, 2009, 166(17):1878-1891. doi: 10.1016/j.jplph.2009.05.016 URL | 
| [12] | JEPSON I, LAY V J, HOLT D C, et al. Cloning and characterization of maize herbicide safener-induced cDNAs encoding subunits of glutathione S-transferase isoforms I, II and IV[J]. Plant molecular biology, 1994, 26(6):1855-1866. doi: 10.1007/BF00019498 URL | 
| [13] | 刁桂萍. 二色补血草LbGST基因的克隆与功能分析[D]. 哈尔滨:东北林业大学, 2010. | 
| [14] | DIRK D, KONSTANTIN G, CORINNA H, et al. Inhibitory effect of metals on animal and plant glutathione transferases[J]. Journal of trace elements in medicine and biology, 2020, 57:48-56. doi: 10.1016/j.jtemb.2019.09.007 URL | 
| [15] | 陈秀华, 王臻昱, 李先平, 等. 谷胱甘肽S-转移酶的研究进展[J]. 东北农业大学学报, 2013, 44(1):149-153. | 
| [16] | Perperopoulou F, Pouliou F, Labrou N E. Recent advances in protein engineering and biotechnological applications of glutathione transferases[J]. Critical reviews in biotechnology, 2017: 1-18. | 
| [17] | 张英, 石朝艳, 汪娅梅, 等. 不同苎麻品种镉胁迫下谷胱甘肽硫转移酶基因的表达特征[J/OL]. 分子植物育种, 2021:1-17. | 
| [18] | KILILI K G, ATANASSOVA N, VARDANYAN A, et al. Differential roles of tau class glutathione S-transferases in oxidative stress[J]. Journal of biological chemistry, 2004, 279(23):24540-51. doi: 10.1074/jbc.M309882200 URL | 
| [19] | 张文凤. 镉胁迫下水稻根系GST蛋白质互作及差异表达蛋白质的分析[D]. 福州:福建农林大学, 2012. | 
| [20] | KUMAR S, ASIF M H, CHAKRABARTY D, et al. Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions[J]. Plant molecular biology reporter, 2013, 31(3):569-580. doi: 10.1007/s11105-012-0524-5 URL | 
| [21] | DROOG F. Plant glutathione S-transferases, a tale of theta and tau[J]. Journal of plant growth regulation, 1997, 16(2):95-107. doi: 10.1007/PL00006984 URL | 
| [22] | EDWARDS R, DIXON D P, WALBOT V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health[J]. Trends in plant science, 2000(5):193-198. | 
| [23] | TRIPATHI A, INDOLIYA Y, TIWARI M, et al. Transformed yeast (Schizosac charomyces pombe) overexpressing rice Tau class glutathione S-transferase (OsGSTU30 and OsGSTU41) shows enhanced resistance to hexavalent chromium[J]. Metallomics, 2014, 6(8):1549-1557. doi: 10.1039/C4MT00083H URL | 
| [24] | SRIVASTAVA D, VERMA G, CHAUHAN A S, et al. Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory net-work leading to heavy metal and drought stress tolerance[J]. Metallomics, 2019, 11(2):375-389. doi: 10.1039/C8MT00204E URL | 
| [25] | 王丽萍, 戚元成, 赵彦修, 等. 盐地碱蓬GST基因的克隆、序列分析及其表达特征[J]. 植物生理与分子生物学学报, 2002(2):133-136. | 
| [26] | 王景荣, 张政达, 樊佳茹, 等. 甜瓜自毒相关基因CmGST的克隆及其对自毒胁迫的响应[J]. 西北植物学报, 2019, 39(7):1172-1180. | 
| [27] | EDWARDS R, DIXON D P. Plant Glutathione Transferases[J]. Methods in enzymology, 2005, 401(3):169-186. | 
| [28] | SMITA K, TRIVEDI P K. Glutathione S-Transferases: Role in combating abiotic stresses including arsenic detoxification in plants[J]. Frontiers in plant science, 2018, 9:751. doi: 10.3389/fpls.2018.00751 URL | 
| [29] | 刘大丽, 李林, 王锦霞, 等. 能源甜菜BvGST基因在大肠杆菌体内对镉逆境的应答特性分析[J]. 中国农学通报, 2019, 35(36):116-121. | 
| [1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. | 
| [2] | CHEN Yinghua, BAI Ruxiao, WANG Juan, ZHANG Xinjiang, LIU Linghui, LIU Xiaolong, FENG Guorui, WEI Changzhou. Foliar Spraying Uniconazole and Boron: Effects on Yield and Sugar Content of Sugar Beet in Taer Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 41-48. | 
| [3] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. | 
| [4] | WANG Linyu, JIANG Yichen, YU Qingyang, WU Zedong, PI Zhi. Histone Deacetylases (HDACs) Gene Family in Sugar Beet: Identification and Functional Prediction [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 9-16. | 
| [5] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. | 
| [6] | WANG Shenghao, YU Bing. Cloning and Bioinformatics Analysis of BvM14-UNG Gene in Sugarbeet M14 Line [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 16-22. | 
| [7] | LIU Na, HU Huabing, WANG Ronghua, LIU Xiaoyue, LIU Zhaoyang, LIU Xiaohan, WANG Maoqian. Methanol Aging Treatment: Effect on Germination of Sugar Beet Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 28-33. | 
| [8] | ZHAO Yaru, PI Zhi, LIU Rui, MA Yuyan, WU Zedong. Genetic Diversity Analysis of Monogerm Cytoplasmic Male Sterile Lines and Maintainer Lines of Sugar Beet [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 35-40. | 
| [9] | DONG Yinzhuang, WANG Gang, YU Lihua, GENG Gui. Effects of Ferrous Stress on Accumulation of Mineral Elements in Sugar Beet Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 11-16. | 
| [10] | SHI Yang, YIN Xilong, LI Wangsheng, XING Wang. PEG Simulated Drought Stress: Effects on Morphological Indices of Drought-tolerant and Drought-sensitive Sugar Beet Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 45-51. | 
| [11] | ZHOU Yanli, LIU Na, YU Lihua, LU Bingfu, ZHANG Wenbin, LIU Xiaoxue. Soil Mechanical Compaction and Its Effect on Crop Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 83-88. | 
| [12] | ZHANG Qiong, WANG Jinxia, MENG Shiqi, ZHONG Xin’ai, LIU Dali, XING Wang. Sugar Beet Heat-shock Protein Gene BvHSP18.2: Cloning and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 111-118. | 
| [13] | YANG Ran, XING Wang, LIU Dali, WU Zedong, WANG Maoqian. Initiation Effects of Different Concentrations of Melatonin on Sugar Beet Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 19-25. | 
| [14] | LIU Danyang, CUI Rufei, GENG Gui, WANG Yuguang. Pathogenic Bacteria of Sugar Beet Blight: Isolation and Identification [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 113-117. | 
| [15] | ZHANG Ziruo, MA Jiajie, GAO Qiuyu, WU Zedong. Molecular Identity for Sugar Beet Varieties: Establishment Based on DAMD Molecular Marker [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 21-26. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||