Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (17): 35-43.doi: 10.11924/j.issn.1000-6850.casb2021-1142
Special Issue: 生物技术
Previous Articles Next Articles
XU Mingyu1(), BAI Tianyu1, WANG Jiayue1, TIAN Lirong1,2(
)
Received:
2021-11-29
Revised:
2022-03-05
Online:
2022-06-15
Published:
2022-07-08
Contact:
TIAN Lirong
E-mail:xumingyu1023@163.com;tianlr@hebtu.edu.cn
CLC Number:
XU Mingyu, BAI Tianyu, WANG Jiayue, TIAN Lirong. Photosynthetic Mechanism of Algae in Response to Iron Deficiency Stress: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 35-43.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-1142
物种 | 光合响应元件 | 主要功能 | 参考文献 |
---|---|---|---|
蓝细菌(Synechocystis sp. PCC 6803) | IsiA IsiB | 在铁限制条件下作为PSI天线 替代含铁的铁氧还蛋白进行电子传递 | [ [ |
蓝细菌(S. elongatus PCC 6301) | IdiA | 保护PSII受体侧免受氧化应激 | [ |
盐生杜氏藻(Dunaliella salina) | Tidi | 帮助PSI捕获光能 | [ |
衣藻(Chlamydomonas reinhardtii) | LHCI PsaC/PsaD PsaE LhcSR3 | 帮助PSI捕获光能 PSI中FA和FB的载脂蛋白 稳定PsaC和PSI核心之间的相互作用 参与NPQ过程,保护光合装置免受氧化损伤 | [ [ [ [ |
硅藻(Phaeodactylum tricornutum) (Thalassiosira oceanica) | PSI Cyt b6f | 将光能转化为化学能 介导PSII和PSI之间的电子传递,缺铁时PSI和Cyt b6f表达量下调 | [ [ |
物种 | 光合响应元件 | 主要功能 | 参考文献 |
---|---|---|---|
蓝细菌(Synechocystis sp. PCC 6803) | IsiA IsiB | 在铁限制条件下作为PSI天线 替代含铁的铁氧还蛋白进行电子传递 | [ [ |
蓝细菌(S. elongatus PCC 6301) | IdiA | 保护PSII受体侧免受氧化应激 | [ |
盐生杜氏藻(Dunaliella salina) | Tidi | 帮助PSI捕获光能 | [ |
衣藻(Chlamydomonas reinhardtii) | LHCI PsaC/PsaD PsaE LhcSR3 | 帮助PSI捕获光能 PSI中FA和FB的载脂蛋白 稳定PsaC和PSI核心之间的相互作用 参与NPQ过程,保护光合装置免受氧化损伤 | [ [ [ [ |
硅藻(Phaeodactylum tricornutum) (Thalassiosira oceanica) | PSI Cyt b6f | 将光能转化为化学能 介导PSII和PSI之间的电子传递,缺铁时PSI和Cyt b6f表达量下调 | [ [ |
[1] |
MORGAN J W, ANDERS E. Chemical composition of earth, venus, and mercury[J]. Proc natl acad sci U S A, 1980, 77(12):6973-6977.
doi: 10.1073/pnas.77.12.6973 URL |
[2] |
RATLEDGE C, DOVER L G. Iron metabolism in pathogenic bacteria[J]. Annu rev microbiol, 2000, 54(1):881-941.
doi: 10.1146/annurev.micro.54.1.881 URL |
[3] |
ALLEN A E, LAROCHE J, MAHESWARI U, et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation[J]. Proc natl acad sci U S A, 2008, 105(30):10438-10443.
doi: 10.1073/pnas.0711370105 URL |
[4] |
GREENE R M, GEIDER R J, KOLBER Z, et al. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae[J]. Plant physiol, 1992, 100(2):565-575.
doi: 10.1104/pp.100.2.565 URL |
[5] | 岳丽娟. 铁胁迫对豌豆幼苗铁代谢、光合作用及抗氧化系统的影响[D]. 兰州: 兰州大学, 2009. |
[6] |
MOREL F M, PRICE N M. The biogeochemical cycles of trace metals in the oceans[J]. Science, 2003, 300(5621):944-947.
doi: 10.1126/science.1083545 URL |
[7] | PILON M, ABDEL-GHANY S E, HOEWYK D V, et al. Biogenesis of iron-sulfur cluster proteins in plastids[J]. Genet eng, 2006, 27(1):101-117. |
[8] | GEIDER R J, GREENE R M, KOLBER Z, et al. Fluorescence assessment of the maximum quantum efficiency of photosynthesis in the western North Atlantic[J]. Deep sea res part I oceanogr, 1993, 40(6):1205-1224. |
[9] | COUTURIER J, TOURAINE B, BRIAT J F, et al. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions[J]. Front plant sci, 2013, 4(259):259. |
[10] | 李丽娅. 铁(Ⅲ)螯合物还原酶在植物铁代谢中的作用研究[D]. 哈尔滨: 哈尔滨师范大学, 2011. |
[11] | DEVADASU E, PANDEY J, DHOKNE K, et al. Restoration of photosynthetic activity and supercomplexes from severe iron starvation in Chlamydomonas reinhardtii[J]. Biochim biophys acta, 2021, 1862(1):148331. |
[12] | 吴慧兰, 王宁, 凌宏清. 植物铁吸收、转运和调控的分子机制研究进展[J]. 植物学通报, 2007(6):779-788. |
[13] | 李利敏, 吴良欢, 马国瑞. 樟树失绿黄化症的研究[J]. 土壤通报, 2009, 40(1):158-161. |
[14] | 申红芸, 熊宏春, 郭笑彤, 等. 植物吸收和转运铁的分子生理机制研究进展[J]. 植物营养与肥料学报, 2011, 17(6):1522-1530. |
[15] | 周晓今, 陈茹梅, 范云六. 植物对铁元素吸收、运输和储存的分子机制[J]. 作物研究, 2012, 26(5):605-610. |
[16] |
BRUMBAROVA T, BAUER P, IVANOV R. Molecular mechanisms governing Arabidopsis iron uptake[J]. Trends plant sci, 2015, 20(2):124-133.
doi: 10.1016/j.tplants.2014.11.004 URL |
[17] | BRIAT J F, ROUACHED H, TISSOT N, et al. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1)[J]. Front plant sci, 2015, 6(1):290. |
[18] | 李俊成, 于慧, 杨素欣, 等. 植物对铁元素吸收的分子调控机制研究进展[J]. 植物生理学报, 2016, 52(6):835-842. |
[19] | 董晓雨, 郝梦琪, 郭东林. 黄色条纹/黄色条纹样蛋白与植物中的铁转运功能[J]. 中国生物化学与分子生物学报, 2017, 33(9):886-892. |
[20] | 云少君, 赵广华. 植物铁代谢及植物铁蛋白结构与功能研究进展[J]. 生命科学, 2012, 24(8):809-816. |
[21] | 张妮娜, 上官周平, 陈娟. 植物应答缺铁胁迫的分子生理机制及其调控[J]. 植物营养与肥料学报, 2018, 24(5):1365-1377. |
[22] |
MUNEER S, JEONG B R, KIM T H, et al. Transcriptional and physiological changes in relation to Fe uptake under conditions of Fe-deficiency and Cd-toxicity in roots of Vigna radiata L[J]. J Plant res, 2014, 127(6):731-742.
doi: 10.1007/s10265-014-0660-0 URL |
[23] | MURGIA I, GIACOMETTI S, BALESTRAZZI A, et al. Analysis of the transgenerational iron deficiency stress memory in Arabidopsis thaliana plants[J]. Front plant sci, 2015, 6(745):1-12. |
[24] | 王金贝. 缺铁、缺硼对两种杨树生理特性的影响[D]. 武汉: 华中农业大学, 2013. |
[25] | 金龙飞. 基于组学的柑橘缺铁及硼胁迫分子响应研究[D]. 武汉: 华中农业大学, 2017. |
[26] |
MURGIA I, GIACOMETTI S, BALESTRAZZI A, et al. The phycobilisome, a light-harvesting complex responsive to environmental conditions[J]. Microbiol rev, 1993, 57(3):725-749.
doi: 10.1128/mr.57.3.725-749.1993 URL |
[27] | YADAVALLI V, NELLAEPALLI S, SUBRAMANYAM R. Proteomic analysis of thylakoid membranes[J]. Methods mol biol, 2011, 684(1):159-170. |
[28] |
STRZEPEK R F, HARRISON P J. Photosynthetic architecture differs in coastal and oceanic diatoms[J]. Nature, 2004, 431(7009):689-692.
doi: 10.1038/nature02954 URL |
[29] |
GUIKEMA J A, SHERMAN L A. Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation[J]. Plant physiol, 1983, 73(2):250-256.
doi: 10.1104/pp.73.2.250 URL |
[30] |
LI Q, HUISMAN J, BIBBY T S, et al. Biogeography of cyanobacterial isiA genes and their link to iron availability in the ocean[J]. Front microbiol, 2019, 10(1):650.
doi: 10.3389/fmicb.2019.00650 URL |
[31] |
SCHOFFMAN H, BROWN W M, PALTIEL Y, et al. Structure-based hamiltonian model for IsiA uncovers a highly robust pigment-protein complex[J]. J r soc interface, 2020, 17(169):20200399.
doi: 10.1098/rsif.2020.0399 URL |
[32] |
KOURIL R, ARTENI A A, LAX J, et al. Structure and functional role of supercomplexes of IsiA and photosystem I in cyanobacterial photosynthesis[J]. Febs lett, 2005, 579(15):3253-3257.
doi: 10.1016/j.febslet.2005.03.051 URL |
[33] | ZHANG Y, CHEN M, CHURCH W B, et al. The molecular structure of the IsiA-photosystem I supercomplex, modelled from high-resolution, crystal structures of photosystem I and the CP43 protein[J]. Biochim biophys acta, 2010, 1797(4):457-465. |
[34] |
ZHAO J, LI R, BRYANT D A. Measurement of photosystem I activity with photoreduction of recombinant flavodoxin[J]. Anal biochem, 1998, 264(2):263-270.
doi: 10.1006/abio.1998.2845 URL |
[35] |
JEANJEAN R, ZUTHER E, YEREMENKO N, et al. A photosystem I psaFJ-null mutant of the cyanobacterium Synechocystis PCC 6803 expresses the isiAB operon under iron replete conditions[J]. Febs Lett, 2003, 549(1-3):52-56.
doi: 10.1016/S0014-5793(03)00769-5 URL |
[36] |
FALK S, SAMSON G, BRUCE D, et al. Functional analysis of the iron-stress induced CP 43' polypeptide of PSII in the cyanobacterium Synechococcus sp. PCC 7942[J]. Photosynth res, 1995, 45(1):51-60.
doi: 10.1007/BF00032235 URL |
[37] |
POLYVIOU D, MACHELETT M M, HITCHCOCK A, et al. Structural and functional characterization of IdiA/FutA (Tery_3377), an iron-binding protein from the ocean diazotroph Trichodesmium erythraeum[J]. J biol chem, 2018, 293(47):18099-18109.
doi: 10.1074/jbc.RA118.001929 URL |
[38] |
MICHEL K P, THOLE H H, PISTORIUS E K. IdiA, a 34 kDa protein in the cyanobacteria Synechococcus sp. strains PCC 6301 and PCC 7942, is required for growth under iron and manganese limitations[J]. Microbiology, 1996, 142(9):2635-2645.
doi: 10.1099/00221287-142-9-2635 URL |
[39] |
YOUSEF N, PISTORIUS E K, MICHEL K P. Comparative analysis of idiA and isiA transcription under iron starvation and oxidative stress in Synechococcus elongatus PCC 7942 wild-type and selected mutants[J]. Arch microbiol, 2003, 180(6):471-483.
doi: 10.1007/s00203-003-0618-4 URL |
[40] |
VARSANO T, WOLF S G, PICK U. A chlorophyll a/b-binding protein homolog that is induced by iron deficiency is associated with enlarged photosystem I units in the eucaryotic alga Dunaliella salina[J]. J biol chem, 2006, 281(15):10305-10315.
doi: 10.1074/jbc.M511057200 URL |
[41] |
MOSELEY J L, ALLINGER T, HERZOG S, et al. Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus[J]. Embo j, 2002, 21(24):6709-6720.
doi: 10.1093/emboj/cdf666 URL |
[42] |
YADAVALLI V, JOLLEY C C, MALLEDA C, et al. Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii[J]. Plos one, 2012, 7(4):e35084.
doi: 10.1371/journal.pone.0035084 URL |
[43] | BONENTE G, BALLOTTARI M, TRUONG T B, et al. Analysis of LHCSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii[J]. PloS biol, 2011, 9(1):e1000577. |
[44] |
TOKUTSU R, MINAGAWA J. Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii[J]. Proc natl acad sci U S A, 2013, 110(24):10016-10021.
doi: 10.1073/pnas.1222606110 URL |
[45] |
ZHAO P, GU W, HUANG A, et al. Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis[J]. J Phycol, 2018, 54(1):34-43.
doi: 10.1111/jpy.12607 URL |
[46] |
BOWLER C, ALLEN A E, BADGER J H, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J]. Nature, 2008, 456(7219):239-244.
doi: 10.1038/nature07410 URL |
[47] |
PETROU K, HASSLER C S, DOBLIN M A, et al. Iron-limitation and high light stress on phytoplankton populations from the Australian Ssub-antarctic zone (saz)[J]. Deep sea res part II top stud oceanogr, 2011, 58(21):2200-2211.
doi: 10.1016/j.dsr2.2011.05.020 URL |
[48] |
YADAVALLI V, NEELAM S, RAO A S, et al. Differential degradation of photosystem I subunits under iron deficiency in rice[J]. J plant physiol, 2012, 169(8):753-759.
doi: 10.1016/j.jplph.2012.02.008 URL |
[49] |
MSILINI N, ZAGHDOUDI M, GOVINDACHARY S, et al. Inhibition of photosynthetic oxygen evolution and electron transfer from the quinone acceptor QA- to QB by iron deficiency[J]. Photosyn res, 2011, 107(3):247-256.
doi: 10.1007/s11120-011-9628-2 URL |
[50] |
NAUMANN B, BUSCH A, ALLMER J, et al. Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii[J]. Proteomics, 2007, 7(21):3964-3979.
doi: 10.1002/pmic.200700407 URL |
[51] |
DEVADASU E, CHINTHAPALLI D K, CHOUHAN N, et al. Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency[J]. Photosynth res, 2019, 139(1-3):253-266.
doi: 10.1007/s11120-018-0580-2 URL |
[52] |
SINGH A K, LI H, BONO L, et al. Novel adaptive responses revealed by transcription profiling of a Synechocystis sp. PCC 6803 delta-isiA mutant in the presence and absence of hydrogen peroxide[J]. Photosynth res, 2005, 84(1-3):65-70.
doi: 10.1007/s11120-004-6429-x URL |
[53] |
SPILLER S, TERRY N. Limiting factors in photosynthesis: II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units[J]. Plant physiol, 1980, 65(1):121-125.
doi: 10.1104/pp.65.1.121 URL |
[54] |
DEVADASU E R, MADIREDDI S K, NAMA S, et al. Iron deficiency cause changes in photochemistry, thylakoid organization, and accumulation of photosystem II proteins in Chlamydomonas reinhardtii[J]. Photosynth res, 2016, 130(1-3):469-478.
doi: 10.1007/s11120-016-0284-4 URL |
[55] |
BOEKEMA E J, HIFNEY A, YAKUSHEVSKA A E, et al. A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria[J]. Nature, 2001, 412(6848):745-748.
doi: 10.1038/35089104 URL |
[56] |
YEREMENKO N, KOURIL R, IHALAINEN J A, et al. Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria[J]. Biochemistry, 2004, 43(32):10308-10313.
doi: 10.1021/bi048772l URL |
[57] |
CHAUHAN D, FOLEA I M, JOLLEY C C, et al. A novel photosynthetic strategy for adaptation to low-iron aquatic environments[J]. Biochemistry, 2011, 50(5):686-692.
doi: 10.1021/bi1009425 URL |
[58] |
MA F, ZHANG X, ZHU X, et al. Dynamic changes of IsiA-containing complexes during long-term iron defificiency in Synechocystis sp. PCC 6803[J]. Mol plant, 2017, 10:143-154.
doi: 10.1016/j.molp.2016.10.009 URL |
[59] |
TOPORIK H, LI J, WILLIAMS D, et al. The structure of the stress-induced photosystem I-IsiA antenna supercomplex[J]. Nat struct mol biol, 2019, 26(6):443-449.
doi: 10.1038/s41594-019-0228-8 URL |
[60] |
AKITA F, NAGAO R, KATO K, et al. Structure of a cyanobacterial photosystem I surrounded by octadecameric IsiA antenna proteins[J]. Commun biol, 2020, 3(1):232.
doi: 10.1038/s42003-020-0949-6 URL |
[61] |
MELKOZERNOV A N, BIBBY T S, LIN S, et al. Time-resolved absorption and emission show that the CP43' antenna ring of iron-stressed synechocystis sp. PCC6803 is efficiently coupled to the photosystem I reaction center core[J]. Biochemistry, 2003, 42(13):3893-3903.
doi: 10.1021/bi026987u URL |
[62] |
NIELD J, MORRIS E P, BIBBY T S, et al. Structural analysis of the photosystem I supercomplex of cyanobacteria induced by iron deficiency[J]. Biochemistry, 2003, 42(11):3180-3188.
doi: 10.1021/bi026933k URL |
[63] |
SUN J, GOLBECK J H. The presence of the IsiA-PSI supercomplex leads to enhanced photosystem I electron throughput in iron-starved cells of Synechococcus sp. PCC 7002[J]. J phys chem b, 2015, 119(43):13549-13559.
doi: 10.1021/acs.jpcb.5b02176 URL |
[64] |
SINGH A K, SHERMAN L A. Reflections on the function of IsiA, a cyanobacterial stress-inducible, chl-binding protein[J]. Photosynth res, 2007, 93(1-3):17-25.
doi: 10.1007/s11120-007-9151-7 URL |
[65] |
SCHOFFMAN H, KEREN N. Function of the IsiA pigment-protein complex in vivo[J]. Photosynth res, 2019, 141(3):343-353.
doi: 10.1007/s11120-019-00638-5 URL |
[66] | LAX J E, ARTENI A A, BOEKEMA E J, et al. Structural response of photosystem 2 to iron deficiency: characterization of a new photosystem 2-IdiA complex from the cyanobacterium Thermosynechococcus elongatusbp-1 Biochim biophys acta, 2007, 1767(6):528-534. |
[67] |
MICHEL K P, EXSS-SONNE P, SCHOLTEN-BECK G, et al. Immunocytochemical localization of IdiA, a protein expressed under iron or manganese limitation in the mesophilic cyanobacterium Synechococcus PCC 6301 and the thermophilic cyanobacterium Synechococcus elongatus[J]. Planta, 1998, 205(1):73-81.
doi: 10.1007/s004250050298 URL |
[68] |
MICHEL K P, PISTORIUS E K. Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA[J]. Physiol plant, 2004, 120(1):36-50.
doi: 10.1111/j.0031-9317.2004.0229.x URL |
[69] |
EXSS-SONNE P, TöLLE J, BADER K P, et al. The IdiA protein of Synechococcus sp. PCC 7942 functions in protecting the acceptor side of photosystem II under oxidative stress[J]. Photosynth res, 2000, 63(2):145-157.
doi: 10.1023/A:1006322925324 URL |
[70] |
ZURBRIGGEN M D, TOGNETTI V B, CARRILLO N. Stress-inducible flavodoxin from photosynthetic microorganisms. the mystery of flavodoxin loss from the plant genome[J]. Iubmb Life, 2007, 59(4-5):355-360.
doi: 10.1080/15216540701258744 URL |
[71] |
HAREL A, BROMBERG Y, FALKOWSKI P G, et al. Evolutionary history of redox metal-binding domains across the tree of life[J]. Proc natl acad sci US A, 2014, 111(19):7042-7047.
doi: 10.1073/pnas.1403676111 URL |
[72] |
PIERELLA KARLUSICH J J, CECCOLI R D, GRAñA M, et al. Environmental selection pressures related to iron utilization are involved in the loss of the flavodoxin gene from the plant genome[J]. Genome biol evol, 2015, 7(3):750-767.
doi: 10.1093/gbe/evv031 URL |
[73] |
CAO P, CAO D, SI L, et al. Structural basis for energy and electron transfer of the photosystem I-IsiA-flavodoxin supercomplex[J]. Nat plants, 2020, 6(2):167-176.
doi: 10.1038/s41477-020-0593-7 URL |
[74] |
PIERELLA KARLUSICH J J, LODEYRO A F, CARRILLO N. The long goodbye: the rise and fall of flavodoxin during plant evolution[J]. J exp bot, 2014, 65(18):5161-5178.
doi: 10.1093/jxb/eru273 URL |
[75] |
NAWROCKI W J, BAILLEUL B, PICOT D, et al. The mechanism of cyclic electron flow[J]. Biochim biophys acta bioenerg, 2019, 1860(5):433-438.
doi: 10.1016/j.bbabio.2018.12.005 URL |
[76] |
IVANOV A G, PARK Y I, MISKIEWICZ E, et al. Iron stress restricts photosynthetic intersystem electron transport in Synechococcus sp. PCC 7942[J]. Febs Lett, 2000, 485(2-3):173-177.
doi: 10.1016/S0014-5793(00)02211-0 URL |
[77] | BAILEY S, MELIS A, MACKEY K R, et al. Alternative photosynthetic electron flow to oxygen in marine Synechococcus[J]. Biochim biophys acta, 2008, 1777(3):269-276. |
[78] |
HOCKIN N L, MOCK T, MULHOLLAND F, et al. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants[J]. Plant physiol, 2012, 158(1):299-312.
doi: 10.1104/pp.111.184333 URL |
[79] | MORRISSEY J, BOWLER C. Iron utilization in marine cyanobacteria and eukaryotic algae[J]. Front microbiol, 2012, 3(43):1-13. |
[80] |
MARCHETTI A, CASSAR N. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications[J]. Geobiology, 2009, 7(4):419-431.
doi: 10.1111/j.1472-4669.2009.00207.x URL |
[81] | GROUNEVA I, JAKOB T, WILHELM C, et al. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana[J]. Biochim biophys acta, 2009, 1787(7):929-938. |
[82] |
GOSS R, JAKOB T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae[J]. Photosynth res, 2010, 106(1-2):103-122.
doi: 10.1007/s11120-010-9536-x URL |
[83] |
KROH G E, PILON M. Regulation of iron homeostasis and use in chloroplasts[J]. Int j mol sci, 2020, 21(9):3395.
doi: 10.3390/ijms21093395 URL |
[1] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. |
[2] | ZHENG Peifeng, JIANG Xiaolei, ZHAI Yanlin, GUO Shaoxia, LI Wei. PGPR in Atrazine Contaminated Soil: Effect on the Growth and Physiology of Zoysia japonica Steud [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 124-131. |
[3] | XIAO Wenmin, ZHANG Hong, REN Zhihong, WU Huanhuan, YANG Shengxiang, WANG Junjie, SUN Haiwei. Effects of Color Shading on Summer Tea in North China [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 36-45. |
[4] | ZHANG Bo, SHI Feng, SONG Fuqiang. AMF Complex Fungicides: Effects on Photosynthesis and Growth of Rice in Cold Region [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 15-22. |
[5] | WANG Yuemin, KE Yuqin, XIE Rongrong, LI Chunying, LI Wenqing. Effects of Spraying Microelement-fertilizer on Physiological Metabolism of Tobacco Plant at Mature Stage Under Localized Fertilization [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 24-30. |
[6] | HUANG Pingsheng, LIU Shinan, LI Ting, QIN Yonghua. Effects of Exogenous Silicon on Photosynthesis and Chlorophyll Fluorescence Characteristics and Antioxidant Enzymes of Cryptocarya concinna Seedlings Under Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 32-38. |
[7] | WANG Jianbo, WANG Jifeng, FU Xiaoling, ZHONG Haixiu, LIU Yingnan, NI Hongwei. Effects of Different Nitrogen Supply on Photosynthetic Characteristics and Growth of Calamagrostis angustifolia Under Elevated CO2 Concentration [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 44-50. |
[8] | ZHANG Bolun, CAO Jiwu, LIANG Qidong, LIANG Junsheng, ZHANG Yi, PENG Cuiying, WANG Xujun. Study on Photosynthetic Characteristics of Paris dunniana [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 62-67. |
[9] | WANG Guiping, XUE Xiaomin, ZHAO Hongqiang, CHEN Ru, HAN Xueping, WANG Jinzheng. Effects of No-Bagging and Bagging Density on Photosynthetic Characteristics of ‘Fuji’ Apple Trees [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 54-59. |
[10] | Wang Mingquan, Fu Lixin, Li Guoliang, Hu Guanghui, Ren Honglei, Hu Shaoxin, Yang Jianfei, Liu Chang, Gong Shichen. The Photosynthesis Mechanism of Tolerant and Sensitive Maize Germplasm Resources Under Salt Tolerance at Seedling Stage [J]. Chinese Agricultural Science Bulletin, 2021, 37(5): 8-14. |
[11] | Wang Xiaolin, Zhang Panpan, Ji Xiaoling, Zhang Jing, Zhang Xiong, Qiao Wenyuan. Fertilizer Proportions in the Loess Hilly Region: Effects on Biomass Distribution, Transformation, and Accumulation of Soybean [J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 23-29. |
[12] | Bao Jiajing, Kong Deyin. Last Frost Index of Dehydrated Green Pepper in Hetao Irrigation District [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 77-82. |
[13] | Liao Ting, Fu Lin, Guo Liqin, Liu Guobin, Wang Ye, Yao Yanwu, Cao Jun. Pigment Change and Photosynthetic Response Characteristics of Plantycladus orientalis cv. Semperourescens [J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 56-63. |
[14] | Qin Fang, Shi Yancai, Qin Huizhen, Zou Rong, Jiang Yunsheng, Xiong Zhongchen. Comparative Study on Physiological Characteristics of Three Sophora japonica ‘Jinhuai’ Varieties [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 38-43. |
[15] | Wang Yihao, Li Shichang, Liu Chunlu, Zhao Yanli, Zheng Guowei, Xu Furong. Research on the Photosynthesis Ability of Pairs polyphylla var. yunnanensis from Different Areas [J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 59-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||