Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (20): 73-80.doi: 10.11924/j.issn.1000-6850.casb2021-0809
Previous Articles Next Articles
ZHANG Heqing1(), WU Jie1, HAN Shuai1, XI Yadong1(
), LI Yuejian2, LIANG Genyun2
Received:
2021-08-20
Revised:
2021-11-04
Online:
2022-07-15
Published:
2022-08-23
Contact:
XI Yadong
E-mail:759214612@qq.com;xiyadong2002@126.com
CLC Number:
ZHANG Heqing, WU Jie, HAN Shuai, XI Yadong, LI Yuejian, LIANG Genyun. Effects of Four Annual Rotation Patterns on Soil Microbial Community[J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 73-80.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0809
群落 | 轮作模式 | OTU数 | ACE指数 | Shannon指数 |
---|---|---|---|---|
土壤真菌群落 | JJ | 171.00±37.55a | 182.92±37.36a | 3.30±0.23a |
LD | 192.25±9.20a | 200.11±7.09a | 3.72±0.12ab | |
LZ | 226.50±21.27a | 231.30±21.86a | 3.23±0.17a | |
SH | 246.75±30.13a | 265.26±25.85a | 3.92±0.08b | |
土壤细菌群落 | JJ | 891.50±154.48ab | 915.18±164.09ab | 5.33±0.15a |
LD | 825.00±53.66a | 849.55±58.00a | 5.01±0.13a | |
LZ | 991.75±46.32ab | 1030.53±54.98ab | 5.23±0.10a | |
SH | 1147.00±15.25b | 1176.49±11.94b | 5.89±0.11b |
群落 | 轮作模式 | OTU数 | ACE指数 | Shannon指数 |
---|---|---|---|---|
土壤真菌群落 | JJ | 171.00±37.55a | 182.92±37.36a | 3.30±0.23a |
LD | 192.25±9.20a | 200.11±7.09a | 3.72±0.12ab | |
LZ | 226.50±21.27a | 231.30±21.86a | 3.23±0.17a | |
SH | 246.75±30.13a | 265.26±25.85a | 3.92±0.08b | |
土壤细菌群落 | JJ | 891.50±154.48ab | 915.18±164.09ab | 5.33±0.15a |
LD | 825.00±53.66a | 849.55±58.00a | 5.01±0.13a | |
LZ | 991.75±46.32ab | 1030.53±54.98ab | 5.23±0.10a | |
SH | 1147.00±15.25b | 1176.49±11.94b | 5.89±0.11b |
轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
LD | Trichoderma | 3 | 7.64 | 2.82 | 3.35 | SH | Acrostalagmus | 0 | 0.01 | 0 | 0.16 |
Talaromyces | 0.15 | 0.5 | 0.05 | 0.05 | Dactylella | 0 | 0 | 0.01 | 0.25 | ||
Symmetrospora | 0 | 0.15 | 0.01 | 0.03 | Ilyonectria | 0 | 0.03 | 0.14 | 0.45 | ||
Spencerozyma | 0 | 0.18 | 0 | 0 | Oidiodendron | 0.08 | 0.28 | 0.11 | 1.1 | ||
LZ | Ramicandelaber | 0 | 0 | 0.16 | 0.03 | Simplicillium | 0 | 0 | 0.01 | 0.23 | |
Pyrenochaetopsis | 0.01 | 0 | 1.39 | 0.37 | Ustilaginoidea | 0 | 0 | 0.23 | 1.1 | ||
Nigrospora | 0 | 0 | 3.94 | 0.62 | Rhizophagus | 0.01 | 0.01 | 0 | 0.07 | ||
Conlarium | 0.05 | 0.04 | 0.18 | 0.06 |
轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
LD | Trichoderma | 3 | 7.64 | 2.82 | 3.35 | SH | Acrostalagmus | 0 | 0.01 | 0 | 0.16 |
Talaromyces | 0.15 | 0.5 | 0.05 | 0.05 | Dactylella | 0 | 0 | 0.01 | 0.25 | ||
Symmetrospora | 0 | 0.15 | 0.01 | 0.03 | Ilyonectria | 0 | 0.03 | 0.14 | 0.45 | ||
Spencerozyma | 0 | 0.18 | 0 | 0 | Oidiodendron | 0.08 | 0.28 | 0.11 | 1.1 | ||
LZ | Ramicandelaber | 0 | 0 | 0.16 | 0.03 | Simplicillium | 0 | 0 | 0.01 | 0.23 | |
Pyrenochaetopsis | 0.01 | 0 | 1.39 | 0.37 | Ustilaginoidea | 0 | 0 | 0.23 | 1.1 | ||
Nigrospora | 0 | 0 | 3.94 | 0.62 | Rhizophagus | 0.01 | 0.01 | 0 | 0.07 | ||
Conlarium | 0.05 | 0.04 | 0.18 | 0.06 |
轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
SH | p_Acidobacteria | 0.252 | 0.058 | 0.360 | 1.680 | SH | Reyranella | 0.109 | 0.060 | 0.235 | 0.613 |
f_Acidobacteriaceae | 0.020 | 0.019 | 0.109 | 0.737 | Phenylobacterium | 0.175 | 0.072 | 0.185 | 0.405 | ||
f_Blastocatellaceae | 0.011 | 0.004 | 0.010 | 0.289 | Steroidobacter | 0.015 | 0.000 | 0.045 | 0.227 | ||
Blastocatellaceae_RB41 | 0.035 | 0.000 | 0.016 | 0.219 | Altererythrobacter | 0.083 | 0.064 | 0.061 | 0.190 | ||
p_Acidobacteria_o_Subgroup_7 | 0.009 | 0.000 | 0.010 | 0.173 | Polycyclovorans | 0.011 | 0.000 | 0.016 | 0.186 | ||
p_Acidobacteria_c_Subgroup_6 | 0.014 | 0.002 | 0.029 | 0.144 | f_Comamonadaceae | 0.005 | 0.011 | 0.008 | 0.174 | ||
Phycicoccus | 0.060 | 0.028 | 0.020 | 0.249 | f_BIrii41 | 0.035 | 0.013 | 0.033 | 0.173 | ||
Iamia | 0.006 | 0.000 | 0.015 | 0.134 | Dokdonella | 0.017 | 0.010 | 0.016 | 0.172 | ||
Patulibacter | 0.008 | 0.000 | 0.019 | 0.116 | Nitrosospira | 0.038 | 0.014 | 0.026 | 0.115 | ||
Gaiella | 0.018 | 0.024 | 0.011 | 0.103 | o_Chthoniobacterales | 0.022 | 0.000 | 0.030 | 0.180 | ||
Chitinophaga | 0.034 | 0.014 | 0.049 | 0.444 | LD | Mizugakiibacter | 8.547 | 12.341 | 5.829 | 3.952 | |
Niastella | 0.002 | 0.000 | 0.027 | 0.192 | p_Saccharibacteria | 2.129 | 4.213 | 1.068 | 1.912 | ||
Flavisolibacter | 0.018 | 0.011 | 0.019 | 0.108 | f_ODP1230B8.23 | 0.919 | 3.105 | 1.084 | 0.450 | ||
p_Chloroflexi_c_KD4-96 | 0.451 | 0.253 | 0.661 | 0.999 | f_Acetobacteraceae | 1.073 | 1.599 | 1.093 | 0.784 | ||
f_Anaerolineaceae | 0.018 | 0.005 | 0.021 | 0.364 | f_Rhodospirillaceae | 0.899 | 1.355 | 0.689 | 0.845 | ||
Nitrolancea | 0.164 | 0.179 | 0.177 | 0.321 | Alkanibacter | 0.162 | 0.260 | 0.077 | 0.016 | ||
Chloroflexi | 0.026 | 0.021 | 0.020 | 0.116 | Bdellovibrio | 0.143 | 0.223 | 0.059 | 0.090 | ||
Gemmatimonas | 0.789 | 0.319 | 0.750 | 1.656 | LZ | p_Acidobacteria | 1.081 | 1.569 | 6.140 | 0.402 | |
Gemmatirosa | 0.106 | 0.066 | 0.041 | 0.323 | Acidibacter | 1.781 | 1.975 | 3.208 | 1.923 | ||
p_Latescibacteria | 0.026 | 0.000 | 0.034 | 0.397 | Aquicella | 0.545 | 0.800 | 1.505 | 0.549 | ||
Nitrospira | 0.222 | 0.183 | 0.519 | 1.013 | Bradyrhizobium | 0.463 | 0.404 | 1.070 | 0.737 | ||
o_Nitrospirales_f_0319-6A21 | 0.022 | 0.000 | 0.022 | 0.185 | Granulicella | 0.266 | 0.398 | 0.846 | 0.404 | ||
Sphingomonas | 1.255 | 1.107 | 1.645 | 3.771 | Methylovirgula | 0.045 | 0.084 | 0.180 | 0.057 | ||
f_Nitrosomonadaceae | 0.217 | 0.074 | 0.415 | 2.433 | Roseiarcus | 0.018 | 0.021 | 0.142 | 0.079 | ||
Pseudolabrys | 0.692 | 0.439 | 1.039 | 1.503 | JJ | Methylobacterium | 0.127 | 0.030 | 0.011 | 0.006 | |
Haliangium | 0.308 | 0.209 | 0.392 | 1.094 |
轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
SH | p_Acidobacteria | 0.252 | 0.058 | 0.360 | 1.680 | SH | Reyranella | 0.109 | 0.060 | 0.235 | 0.613 |
f_Acidobacteriaceae | 0.020 | 0.019 | 0.109 | 0.737 | Phenylobacterium | 0.175 | 0.072 | 0.185 | 0.405 | ||
f_Blastocatellaceae | 0.011 | 0.004 | 0.010 | 0.289 | Steroidobacter | 0.015 | 0.000 | 0.045 | 0.227 | ||
Blastocatellaceae_RB41 | 0.035 | 0.000 | 0.016 | 0.219 | Altererythrobacter | 0.083 | 0.064 | 0.061 | 0.190 | ||
p_Acidobacteria_o_Subgroup_7 | 0.009 | 0.000 | 0.010 | 0.173 | Polycyclovorans | 0.011 | 0.000 | 0.016 | 0.186 | ||
p_Acidobacteria_c_Subgroup_6 | 0.014 | 0.002 | 0.029 | 0.144 | f_Comamonadaceae | 0.005 | 0.011 | 0.008 | 0.174 | ||
Phycicoccus | 0.060 | 0.028 | 0.020 | 0.249 | f_BIrii41 | 0.035 | 0.013 | 0.033 | 0.173 | ||
Iamia | 0.006 | 0.000 | 0.015 | 0.134 | Dokdonella | 0.017 | 0.010 | 0.016 | 0.172 | ||
Patulibacter | 0.008 | 0.000 | 0.019 | 0.116 | Nitrosospira | 0.038 | 0.014 | 0.026 | 0.115 | ||
Gaiella | 0.018 | 0.024 | 0.011 | 0.103 | o_Chthoniobacterales | 0.022 | 0.000 | 0.030 | 0.180 | ||
Chitinophaga | 0.034 | 0.014 | 0.049 | 0.444 | LD | Mizugakiibacter | 8.547 | 12.341 | 5.829 | 3.952 | |
Niastella | 0.002 | 0.000 | 0.027 | 0.192 | p_Saccharibacteria | 2.129 | 4.213 | 1.068 | 1.912 | ||
Flavisolibacter | 0.018 | 0.011 | 0.019 | 0.108 | f_ODP1230B8.23 | 0.919 | 3.105 | 1.084 | 0.450 | ||
p_Chloroflexi_c_KD4-96 | 0.451 | 0.253 | 0.661 | 0.999 | f_Acetobacteraceae | 1.073 | 1.599 | 1.093 | 0.784 | ||
f_Anaerolineaceae | 0.018 | 0.005 | 0.021 | 0.364 | f_Rhodospirillaceae | 0.899 | 1.355 | 0.689 | 0.845 | ||
Nitrolancea | 0.164 | 0.179 | 0.177 | 0.321 | Alkanibacter | 0.162 | 0.260 | 0.077 | 0.016 | ||
Chloroflexi | 0.026 | 0.021 | 0.020 | 0.116 | Bdellovibrio | 0.143 | 0.223 | 0.059 | 0.090 | ||
Gemmatimonas | 0.789 | 0.319 | 0.750 | 1.656 | LZ | p_Acidobacteria | 1.081 | 1.569 | 6.140 | 0.402 | |
Gemmatirosa | 0.106 | 0.066 | 0.041 | 0.323 | Acidibacter | 1.781 | 1.975 | 3.208 | 1.923 | ||
p_Latescibacteria | 0.026 | 0.000 | 0.034 | 0.397 | Aquicella | 0.545 | 0.800 | 1.505 | 0.549 | ||
Nitrospira | 0.222 | 0.183 | 0.519 | 1.013 | Bradyrhizobium | 0.463 | 0.404 | 1.070 | 0.737 | ||
o_Nitrospirales_f_0319-6A21 | 0.022 | 0.000 | 0.022 | 0.185 | Granulicella | 0.266 | 0.398 | 0.846 | 0.404 | ||
Sphingomonas | 1.255 | 1.107 | 1.645 | 3.771 | Methylovirgula | 0.045 | 0.084 | 0.180 | 0.057 | ||
f_Nitrosomonadaceae | 0.217 | 0.074 | 0.415 | 2.433 | Roseiarcus | 0.018 | 0.021 | 0.142 | 0.079 | ||
Pseudolabrys | 0.692 | 0.439 | 1.039 | 1.503 | JJ | Methylobacterium | 0.127 | 0.030 | 0.011 | 0.006 | |
Haliangium | 0.308 | 0.209 | 0.392 | 1.094 |
[1] |
BERENDSEN R L, PIETERSE C M J, Bakker P A. The rhizosphere microbiome and plant health[J]. Trends in plant science, 2012, 17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001 URL |
[2] |
SCHLATTER D, KINKEL L, THOMASHOW L, et al. Disease suppressive soils: new insights from the soil microbiome[J]. Phytopathology, 2017, 107(11):1284-1297.
doi: 10.1094/PHYTO-03-17-0111-RVW URL |
[3] |
王孝林, 王二涛. 根际微生物促进水稻氮利用[J]. 植物学报, 2019, 54(3):285-287.
doi: 10.11983/CBB19060 |
[4] | 薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报, 2019, 33(6):10-20. |
[5] |
NUMAN M, BASHIR S, KHAN Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review[J]. Microbiological research, 2018, 209:21-32.
doi: 10.1016/j.micres.2018.02.003 URL |
[6] | BHARTI N, BARNAWAL D. Amelioration of salinity stress by PGPR:ACC deaminase and ROS scavenging enzymes activity. In: PGPR Amelioration in Sustainable Agriculture[M]. Woodhead publishing, 2019:85-106. |
[7] |
黄化刚, 吕立新, 张艳茗, 等. 微生物帮助烟草抗旱的机理及其应用[J]. 应用生态学报, 2017, 28(9):3099-3110.
doi: 10.13287/j.1001-9332.201709.013 |
[8] |
MENDES R, RAAIJMAKERS J M. Cross-kingdom similarities in microbiome functions[J]. The ISME journal, 2015, 9(9):1905-1907.
doi: 10.1038/ismej.2015.7 URL |
[9] |
PUTTEN W H, BRADFORD M A, BRINKMAN E P, et al. Where, when and how plant-soil feedback matters in a changing world[J]. Functional ecology, 2016, 30(7):1109-1121.
doi: 10.1111/1365-2435.12657 URL |
[10] |
HAAS D, DéFago G. Biological control of soil-borne pathogens by fluorescent pseudomonads[J]. Nature reviews microbiology, 2005, 3(4):307-319.
doi: 10.1038/nrmicro1129 URL |
[11] |
MAKATE C, WANG R, MAKATE M, et al. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change[J]. SpringerPlus, 2016, 5(1):1135.
doi: 10.1186/s40064-016-2802-4 URL |
[12] | ZHANG L C, HUANG W, XIAO W, et al. Comparison of Soil Enzyme Activity and Microbial Community Structure between Rapeseed-Rice and Rice-Rice Plantings[J]. International journal of agriculture and bioligy, 2018, 20(8):1801-1808. |
[13] | HOU P F, CHIEN C H, CHIANG-HSIEH Y F, et al. Paddy-upland rotation for sustainable agriculture with regards to diverse soil microbial community[J]. Scientific reports, 2018, 8(1):1-9. |
[14] |
STEINAUER K, CHATZINOTAS A, EISENHAUER N. Root exudate cocktails: the link between plant diversity and soil microorganisms?[J]. Ecology and Evolution, 2016, 6(20):7387-7396.
doi: 10.1002/ece3.2454 URL |
[15] |
GRUNERT O, ROBLES-AGUILAR A A, HERNANDEZ-SANABRIA E, et al. Tomato plants rather than fertilizers drive microbial community structure in horticultural growing media[J]. Scientific reports, 2019, 9(1):1-15.
doi: 10.1038/s41598-018-37186-2 URL |
[16] |
ZHOU X G, ZHANG J, PAN D, et al. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions[J]. Biology and fertility of soils, 2018, 54:363-372.
doi: 10.1007/s00374-018-1265-x URL |
[17] |
ZHOU X G, WU F. Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities[J]. Scientific reports, 2018, 8:4929.
doi: 10.1038/s41598-018-23406-2 URL |
[18] | AIL-ALI A, DERAVEL J, KRIER F,et al. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42[J]. Environmental science and pollution research, 2018,25, 30:29910-29920. |
[19] |
ALAM K M, ZHANG T, YAN Y L, et al. Transcriptional Analysis of Pseudomonas stutzeri A1501 Associated with Host Rice[J]. Advances in microbiology, 2016, 6(3):210-221.
doi: 10.4236/aim.2016.63021 URL |
[20] | SUGIYAMA A, YAZAKI K. Root exudates of legume plants and their involvement in interactions with soil microbes. Secretions and exudates in biological systems[M]. Springer, Berlin,Heidelberg, 2012:27-48. |
[21] |
DACHEV M, BíNa D, SOBOTKA R, et al. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica[J]. PLoS biology, 2017, 15(12):e2003943.
doi: 10.1371/journal.pbio.2003943 URL |
[22] |
DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509.
doi: 10.1038/nature16461 URL |
[23] |
TANGAROMSUK J, POKETHITIYOOK P, KRUATRACHUE M, et al. Cadmium biosorption by Sphingomonas paucimobilis biomass[J]. Bioresource Technology, 2002, 85(1):103-105.
doi: 10.1016/S0960-8524(02)00066-4 URL |
[24] |
LIU S W, XU M, TUO L, et al. Phycicoccus endophyticus sp. nov., an endophytic actinobacterium isolated from Bruguiera gymnorhiza[J]. International journal of systematic and evolutionary microbiology, 2016, 66(3):1105-1111.
doi: 10.1099/ijsem.0.000842 URL |
[25] |
JIN D C, KONG X, LI H H, et al. Patulibacter brassicae sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris)[J]. International journal of systematic and evolutionary microbiology, 2016, 66(12):5056-5060.
doi: 10.1099/ijsem.0.001469 URL |
[26] | 何英, 张屹, 朱菲莹, 等. 西瓜枯萎病不同发病阶段根际微生物群落结构分析[J]. 湖南农业科学, 2019(9):47-50. |
[27] | HUYNH T T T. Biocontrol potential of Bradyrhizobium japonicum against soybean sudden death syndrome[D]. Iowa State: Iowa State university department of plant pathology and microbiology, 2019:11-50. |
[28] |
OSHKIN I Y, KULICHEVSKAYA I S, RIJPSTRA W I C, et al. Granulicella sibirica sp. nov., a psychrotolerant acidobacterium isolated from an organic soil layer in forested tundra, West Siberia[J]. International journal of systematic and evolutionary microbiology, 2019, 69(4):1195-1201.
doi: 10.1099/ijsem.0.003290 URL |
[29] |
GROSSI C E M, FANTINO E, SERRAL F, et al. Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions[J]. Frontiers in plant science, 2020, 11:1-15.
doi: 10.3389/fpls.2020.00001 URL |
[30] | 尹彦舒, 崔曼, 崔伟国, 等. 大蒜连作障碍形成机理的研究进展[J]. 生物资源, 2018, 40(2):141-147. |
[1] | CHEN Dao, WANG Xin, JIANG Shan, ZHANG Jie, WU Zujian, DING Xinlun. Strawberry Mottle Virus Isolated in Fujian: Complete Genome Sequence and Molecular Variation [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 94-101. |
[2] | WANG Yan, WANG Liwei, ZHAO Hongyan, ZHAO Min, YANG Hongyan. Characteristics of Nutrients and Microbial Community Composition of Different Panax ginseng Cultivation Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 60-68. |
[3] | HAN Yajing, WANG Xinyu, LI Jiayue, HUANG Qunyi, WANG Hanting, YE Lefu, FU Xue. Effects of Two Types of Foliar Fertilizers on Cucumber-Thrips [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 113-119. |
[4] | XU Xiaomei, LI Ying, HENG Zhou, XU Xiaowan, LI Tao, WANG Hengming. CaWRKY Transcription Factors Induced by Phytophthora capsici: Screening and Signal Pathway Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 22-31. |
[5] | LI Zhou, YANG Yayun, DAI Luyuan, ZHANG Feifei, A Xinxiang, DONG Chao, WANG Bin, TANG Cuifeng. Rice Bacterial Blight Resistance Genes and Resistance-related Factors: A Review on Research and Utilization [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 91-99. |
[6] | CHEN Qingqing, WANG Chunlin, ZHANG Haishan, ZHANG Aifang. Rice Blast and Bacterial Blight of Regional Trial Rice Varieties in Anhui Province: Resistance Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 134-139. |
[7] | CHEN Liuhong, ZHAO Chunlei, WANG Xi, LI Yanli, DING Guangzhou, CHEN Li. Single-cell Transcriptome Sequencing Technology and Its Application in Plant Research [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 87-93. |
[8] | LV Wei, LI Shengnan, FENG Guojun, YANG Xiaoxu, LIU Chang, YAN Zhishan, LIU Dajun. Physiological and Biochemical Analysis of Exogenous Melatonin for Reducing Propamocarb Residues in Cucumber [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 107-113. |
[9] | SHI Lihong, SUN Mei, TANG Haiming, WEN Li, LI Chao, CHENG Kaikai, LI Weiyan, XIAO Xiaoping. Soil Nitrogen Fractions and Microbial Diversity in Paddy Field Under Different Fertilization Modes: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 106-110. |
[10] | JIANG Shihua, CHI Zaixiang, ZENG Xiaoshan, YANG Xiuxun, MO Qingzhong, CHEN Jinmei, LEI Ying. Meteorological Conditions for Late Blight Occurrence on Winter-planting Potato in Guizhou Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 129-137. |
[11] | HE Lei, SUN Enhui, DENG Tao, YONG Cheng, FAN Xiaodong, HUANG Hongying. Effects of Seedling Containers Made of Camphor Tree Processing Residues on Cucumber Seedling Growth and Physiological Characteristics [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 38-46. |
[12] | LI Xiaoyan, NI Chang, LIU Xu. Effects of Different Control Methods on Root-knot Nematode of Greenhouse Cucumber [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 130-133. |
[13] | LIU Danyang, CUI Rufei, GENG Gui, WANG Yuguang. Pathogenic Bacteria of Sugar Beet Blight: Isolation and Identification [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 113-117. |
[14] | TAO Zhengda, LI Haoyu, ZHAO Jingxian, WANG Jun. Meteorological Conditions of Dongshan Loquat in 2019 - 2021: Evaluation and Comparative Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 95-101. |
[15] | LAI Xiaofang, YU Shanhong, YANG Changliang, LI Lin, CHENG Xu, CHEN Xiaoshang. Fungicide Screening and Control of Stem Blight of Eleocharis dulcis [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 78-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||