Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (27): 119-124.doi: 10.11924/j.issn.1000-6850.casb2022-0269
Special Issue: 生物技术
Previous Articles Next Articles
LI Jiajia1,2(), XU Lingqing1,2, ZHAO Yang1,2, RUI Xiuli1,2, SHI Junting1,2, LIU Dali1,2(
)
Received:
2022-04-08
Revised:
2022-06-15
Online:
2022-10-05
Published:
2022-09-21
Contact:
LIU Dali
E-mail:qianxiao20886@163.com;daliliu_hlju@163.com
CLC Number:
LI Jiajia, XU Lingqing, ZHAO Yang, RUI Xiuli, SHI Junting, LIU Dali. Nitrogen Metabolism Involved in Low Nitrogen Stress in Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 119-124.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2022-0269
[1] |
GOOD A G, SHRAWAT A K, MUENCH D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?[J]. Trends in plant science, 2004, 9(12):597-605.
doi: 10.1016/j.tplants.2004.10.008 URL |
[2] |
CURCI P L, AIESE CIGLIANO R, ZULUAGA D L, et al. Transcriptomic response of durum wheat to nitrogen starvation[J]. Scientific reports, 2017, 7(1):1-14.
doi: 10.1038/s41598-016-0028-x URL |
[3] |
GUTIéRREZ R A. Systems biology for enhanced plant nitrogen nutrition[J]. Science, 2012, 336(6089):1673-1675.
doi: 10.1126/science.1217620 URL |
[4] | 许振柱, 周广胜. 植物氮代谢及其环境调节研究进展[J]. 应用生态学报, 2004(3):511-516. |
[5] |
XU G, FAN X, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annual review of plant biology, 2012, 63:153-182.
doi: 10.1146/annurev-arplant-042811-105532 URL |
[6] | CHOW F. Nitrate assimilation: the role of in vitro nitrate reductase assay as nutritional predictor[J]. Agricultural and biological sciences, applied photosynthesis, In tech, 2012:105-120. |
[7] |
FOYER C H, NOCTOR G, HODGES M. Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency[J]. Journal of experimental botany, 2011, 62(4):1467-1482.
doi: 10.1093/jxb/erq453 URL |
[8] |
YANG X, NIAN J, XIE Q, et al. Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies[J]. Molecular plant, 2016, 9(11):1520-1534.
doi: 10.1016/j.molp.2016.09.004 URL |
[9] |
XIN W, ZHANG L, ZHANG W, et al. An integrated analysis of the rice transcriptome and metabolome reveals differential regulation of carbon and nitrogen metabolism in response to nitrogen availability[J]. International journal of molecular sciences, 2019, 20(9):2349.
doi: 10.3390/ijms20092349 URL |
[10] |
LAURENT S, CHEN H, BéDU S, et al. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120[J]. Proceedings of the national academy of sciences, 2005, 102(28):9907-9912.
doi: 10.1073/pnas.0502337102 URL |
[11] |
REICH P B, TjOELKER M G, MACHADO J L, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants[J]. Nature, 2006, 439(7075):457-461.
doi: 10.1038/nature04282 URL |
[12] |
CHELLAMUTHU V R, ALVA V, FORCHHAMMER K. From cyanobacteria to plants: conservation of PII functions during plastid evolution[J]. Planta, 2013, 237(2):451-462.
doi: 10.1007/s00425-012-1801-0 URL |
[13] |
XIN M, WANG L, LIU Y, et al. Transcriptome profiling of cucumber genome expression in response to long-term low nitrogen stress[J]. Acta physiologiae plantarum, 2017, 39(6):1-11.
doi: 10.1007/s11738-016-2300-x URL |
[14] |
BI Y M, WANG R L, ZHU T, et al. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis[J]. BMC genomics, 2007, 8:281-281.
doi: 10.1186/1471-2164-8-281 URL |
[15] |
MENG F, XIANG D, ZHU J, et al. Molecular mechanisms of root development in rice[J]. Rice, 2019, 12(1):1-10.
doi: 10.1186/s12284-018-0262-x URL |
[16] |
EISSENSTAT D, WELLS C, YANAI R, et al. Building roots in a changing environment: implications for root longevity[J]. The new phytologist, 2000, 147(1):33-42.
doi: 10.1046/j.1469-8137.2000.00686.x URL |
[17] |
JU C, BURESH R J, WANG Z, et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application[J]. Field crops research, 2015, 175:47-55.
doi: 10.1016/j.fcr.2015.02.007 URL |
[18] |
WALCH-LIU P, IVANOV I I, FILLEUR S, et al. Nitrogen regulation of root branching[J]. Annals of botany, 2006, 97(5):875-881.
doi: 10.1093/aob/mcj601 URL |
[19] |
RUIZ HERRERA L F, SHANE M W, LóPEZ-BUCIO J. Nutritional regulation of root development[J]. Wiley interdisciplinary reviews: developmental biology, 2015, 4(4):431-443.
doi: 10.1002/wdev.183 URL |
[20] | EISSENSTAT D M. Trade-offs in root form and function[J]. Ecology in agriculture, 1997:173-199. |
[21] |
TRUBAT R, CORTINA J, VILAGROSA A. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings[J]. Oecologia, 2012, 170(4):899-908.
doi: 10.1007/s00442-012-2380-2 URL |
[22] | 李佳佳, 魏多, 徐翎清, 等. 甜菜对低氮胁迫的形态学响应机制[J]. 中国农学通报, 2021, 37(36):41-46. |
[23] |
CHAMIZO-AMPUDIA A, SANZ-LUQUE E, LLAMAS A, et al. Nitrate reductase regulates plant nitric oxide homeostasis[J]. Trends in plant science, 2017, 22(2):163-174.
doi: 10.1016/j.tplants.2016.12.001 URL |
[24] |
钟鹏, 刘杰, 王建丽, 等. 花生对低温胁迫的生理响应及抗寒性评价[J]. 核农学报, 2018, 32(6):1195-1202.
doi: 10.11869/j.issn.100-8551.2018.06.1195 |
[25] | 汤玉玮, 林振武, 陈敬祥. 硝酸还原酶活力与作物耐肥性的相关性及其在生化育种上应用的探讨[J]. 中国农业科学, 1985(6):39-45. |
[26] |
CREIGHTON M T, SANMARTíN M, KATAYA A R, et al. Light regulation of nitrate reductase by catalytic subunits of protein phosphatase 2A[J]. Planta, 2017, 246(4):701-710.
doi: 10.1007/s00425-017-2726-4 URL |
[27] |
程丽丽, 潘樱, 林艳, 等. 低氮胁迫对不同光皮桦基因型苗期生长及生理生化特征的影响[J]. 核农学报, 2020, 34(11):2435-2443.
doi: 10.11869/j.issn.100-8551.2020.11.2435 |
[28] |
KUSANO M, TABUCHI M, FUKUSHIMA A, et al. Metabolomics data reveal a crucial role of cytosolic glutamine synthetase 1;1 in coordinating metabolic balance in rice[J]. The plant journal, 2011, 66(3):456-466.
doi: 10.1111/j.1365-313X.2011.04506.x URL |
[29] |
HIREL B, GADAL P. Glutamine synthetase in rice: a comparative study of the enzymes from roots and leaves[J]. Plant physiology, 1980, 66(4):619-623.
doi: 10.1104/pp.66.4.619 URL |
[30] | YAMAYA T, OAKS A. Metabolic regulation of ammonium uptake and assimilation, in nitrogen acquisition and assimilation in higher plants[M]. Springer, 2004:35-63. |
[31] |
WALLSGROVE R M, TURNER J C, HALL N P, et al. Barley mutants lacking chloroplast glutamine synthetase—biochemical and genetic analysis[J]. Plant physiology, 1987, 83(1):155-158.
doi: 10.1104/pp.83.1.155 URL |
[32] | LAM H-M, COSCHIGANO K, OLIVEIRA I, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J]. Annual review of plant biology, 1996, 47(1):569-593. |
[33] |
YU Z, SHE M, ZHENG T, et al. Impact and mechanism of sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content[J]. Communications biology, 2021, 4(1):1-16.
doi: 10.1038/s42003-020-01566-0 URL |
[34] | SECHLEY K A, YAMAYA T, OAKS A. Compartmentation of nitrogen assimilation in higher plants[J]. International review of cytology, 1992, 134(6):85-163. |
[35] | 陈阳, 孙华山, 王玉书, 等. 草地早熟禾NADH-GOGAT基因的克隆及表达分析[J]. 草地学报, 2019, 27(2):459-465. |
[36] | 牛超, 刘关君, 曲春浦, 等. 谷氨酸合成酶基因及其在植物氮代谢中的调节作用综述[J]. 江苏农业科学, 2018, 46(9):10-16. |
[37] | 龚茵茵, 燕璐, 林建中, 等. 低等生物谷氨酸脱氢酶基因用于作物遗传改良的研究进展[J]. 生命科学研究, 2021, 25(1):31-38. |
[38] |
LEHMANN T, SKROK A, DABERT M. Stress-induced changes in glutamate dehydrogenase activity imply its role in adaptation to C and N metabolism in lupine embryos[J]. Physiologia plantarum, 2010, 138(1):35-47.
doi: 10.1111/j.1399-3054.2009.01294.x URL |
[39] | 王新磊, 吕新芳. 氮代谢参与植物逆境抵抗的作用机理研究进展[J]. 广西植物, 2020, 40(4):583-591. |
[40] |
VALLIYODAN B, NGUYEN H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants[J]. Current opinion in plant biology, 2006, 9(2):189-195.
doi: 10.1016/j.pbi.2006.01.019 URL |
[41] |
CHIKOV V, BAKIROVA G. Relationship between carbon and nitrogen metabolisms in photosynthesis. The role of photooxidation processes[J]. Photosynthetica, 2000, 37(4):519-527.
doi: 10.1023/A:1007150921664 URL |
[42] | 李强, 罗延宏, 龙文靖, 等. 低氮胁迫对不同耐低氮性玉米品种苗期生长和生理特性的影响[J]. 草业学报, 2014, 23(4):204-212. |
[43] |
LILLO C. Signalling cascades integrating light-enhanced nitrate metabolism[J]. Biochemical journal, 2008, 415(1):11-19.
doi: 10.1042/BJ20081115 URL |
[44] |
NUNES-NESI A, FERNIE A R, STITT M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions[J]. Molecular plant, 2010, 3(6):973-996.
doi: 10.1093/mp/ssq049 URL |
[45] |
BAO A, ZHAO Z, DING G, et al. The stable level of glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance[J]. International journal of molecular sciences, 2015, 16(6):12713-12736.
doi: 10.3390/ijms160612713 URL |
[46] |
SWEETLOVE L J, BEARD K F, NUNES-NESI A, et al. Not just a circle: flux modes in the plant TCA cycle[J]. Trends in plant science, 2010, 15(8):462-470.
doi: 10.1016/j.tplants.2010.05.006 URL |
[47] |
KRAPP A, TRAONG H-N. Regulation of C/N interaction in model plant species[J]. Journal of crop improvement, 2006, 15(2):127-173.
doi: 10.1300/J411v15n02_05 URL |
[48] |
PARRY M, ANDRALOjC P, MITCHELL R A, et al. Manipulation of Rubisco: the amount, activity, function and regulation[J]. Journal of experimental botany, 2003, 54(386):1321-1333.
doi: 10.1093/jxb/erg141 URL |
[49] |
COUSINS A B, PRACHAROENWATTANA I, ZHOU W, et al. Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release[J]. Plant physiology, 2008, 148(2):786-795.
doi: 10.1104/pp.108.122622 URL |
[50] |
ZHANG C C, ZHOU C Z, BURNAP R L, et al. Carbon/nitrogen metabolic balance: lessons from cyanobacteria[J]. Trends in plant science, 2018, 23(12):1116-1130.
doi: 10.1016/j.tplants.2018.09.008 URL |
[51] |
HöRTENSTEINER S, FELLER U. Nitrogen metabolism and remobilization during senescence[J]. Journal of experimental botany, 2002, 53(370):927-937.
doi: 10.1093/jexbot/53.370.927 URL |
[52] |
GAUTHIER P P, BLIGNY R, GOUT E, et al. In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO2 assimilation in illuminated leaves of Brassica napus[J]. New phytologist, 2010, 185(4):988-999.
doi: 10.1111/j.1469-8137.2009.03130.x URL |
[53] |
WANG S, ALSEEKH S, FERNIE A R, et al. The structure and function of major plant metabolite modifications[J]. Molecular plant, 2019, 12(7):899-919.
doi: 10.1016/j.molp.2019.06.001 URL |
[54] |
DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of integrative plant biology, 2021, 63(1):180-209.
doi: 10.1111/jipb.13054 URL |
[55] | FRASER C M, CHAPPLE C. The phenylpropanoid pathway in Arabidopsis[J]. The arabidopsis book/American society of plant biologists, 2011,9. |
[56] |
DIXON R A, PAIVA N L. Stress-induced phenylpropanoid metabolism[J]. The plant cell, 1995, 7(7):1085.
doi: 10.2307/3870059 URL |
[57] |
HICHRI I, BARRIEU F, BOGS J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. Journal of experimental botany, 2011, 62(8):2465-2483.
doi: 10.1093/jxb/erq442 URL |
[58] |
TOHGE T, WATANABE M, HOEFGEN R, et al. The evolution of phenylpropanoid metabolism in the green lineage[J]. Critical reviews in biochemistry and molecular biology, 2013, 48(2):123-152.
doi: 10.3109/10409238.2012.758083 URL |
[59] |
ZHANG Q, TANG D, LIU M, et al. Integrated analyses of the transcriptome and metabolome of the leaves of albino tea cultivars reveal coordinated regulation of the carbon and nitrogen metabolism[J]. Scientia horticulturae, 2018, 231:272-281.
doi: 10.1016/j.scienta.2017.11.026 URL |
[60] | IWASHINA T. Contribution to flower colors of flavonoids including anthocyanins: a review[J]. Natural product communications, 2015, 10(3): 1934578X1501000335. |
[61] |
YE J, WANG G, TAN J, et al. Identification of candidate genes involved in anthocyanin accumulation using Illmuina-based RNA-seq in peach skin[J]. Scientia horticulturae, 2019, 250:184-198.
doi: 10.1016/j.scienta.2019.02.047 URL |
[62] |
ALBERT N W, LEWIS D H, ZHANG H, et al. Light-induced vegetative anthocyanin pigmentation in Petunia[J]. Journal of experimental botany, 2009, 60(7):2191-2202.
doi: 10.1093/jxb/erp097 URL |
[63] |
GARCíA-CALDERóN M, PéREZ-DELGADO C M, PALOVE-BALANG P, et al. Flavonoids and isoflavonoids biosynthesis in the model legume lotus japonicus; connections to nitrogen metabolism and photorespiration[J]. Plants, 2020, 9(6):774.
doi: 10.3390/plants9060774 URL |
[64] |
YANG R, CHEN M, SUN J-C, et al. Genome-wide analysis of LIM family genes in Foxtail millet (Setaria italica L.) and characterization of the role of SiWLIM2b in drought tolerance[J]. International journal of molecular sciences, 2019, 20(6):1303.
doi: 10.3390/ijms20061303 URL |
[65] | ZHOU P, SU L, LV A, et al. Gene expression analysis of alfalfa seedlings response to acid-aluminum[J]. International journal of genomics, 2016,2016. |
[66] |
HUANG H, YAO Q, XIA E, et al. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor[J]. Journal of agricultural and food chemistry, 2018, 66(37):9828-9838.
doi: 10.1021/acs.jafc.8b01995 URL |
[67] |
CONG F, DIEHL B G, HILL J L, et al. Covalent bond formation between amino acids and lignin: cross-coupling between proteins and lignin[J]. Phytochemistry, 2013, 96:449-456.
doi: 10.1016/j.phytochem.2013.09.012 URL |
[68] |
ZHANG X, MISRA A, NARGUND S, et al. Concurrent isotope-assisted metabolic flux analysis and transcriptome profiling reveal responses of poplar cells to altered nitrogen and carbon supply[J]. The plant journal, 2018, 93(3):472-488.
doi: 10.1111/tpj.13792 URL |
[69] |
ZHAO Q. Lignification: flexibility, biosynthesis and regulation[J]. Trends in plant science, 2016, 21(8):713-721.
doi: 10.1016/j.tplants.2016.04.006 URL |
[70] | LE ROY J, HUSS B, CREACH A, et al. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants[J]. Frontiers in plant science, 2016, 7:735. |
[71] |
YANG W, YOON J, CHOI H, et al. Transcriptome analysis of nitrogen-starvation-responsive genes in rice[J]. BMC plant biology, 2015, 15(1):1-12.
doi: 10.1186/s12870-014-0410-4 URL |
[72] |
TIWARI J K, BUCKSETH T, ZINTA R, et al. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress[J]. Scientific reports, 2020, 10(1):1-18.
doi: 10.1038/s41598-019-56847-4 URL |
[73] |
LIANG T, YUAN Z, FU L, et al. Integrative transcriptomic and proteomic analysis reveals an alternative molecular network of Glutamine Synthetase 2 corresponding to nitrogen deficiency in rice (Oryza sativa L.)[J]. International journal of molecular sciences, 2021, 22(14):7674.
doi: 10.3390/ijms22147674 URL |
[74] | SULTANA N, ISLAM S, JUHASZ A, et al. Transcriptomic study for identification of major nitrogen stress responsive genes in Australian bread wheat cultivars[J]. Frontiers in genetics, 2020:1086. |
[1] | LUO Xianfu, LIU Wenqiang, PAN Xiaowu, DONG Zheng, LIU Sanxiong, LIU Licheng, YANG Biaoren, SHENG Xinnian, LI Xiaoxiang. Mapping of Plant Height QTL Using NILs Derived from Residual Heterozygous Lines in Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 1-5. |
[2] | HUANG Yu, CHEN Bin, XIAO Guanli. The Physiological Response of the Local Rice Variety of ‘Acuce’ of Hani Nationality in Yunnan Against the Feeding of Nilaparvata lugens Stål [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 123-129. |
[3] | JI Kun, WANG Bin, ZHAO Bowen, XUE Hao, WU Jianmin, ZHU Xiaojian, WANG Yixin, ZHAO Haijun, HAN Zanping. Different Maize Germplasm Materials: Grey Correlation Analysis of Plant and Ear-kernel Traits [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 27-32. |
[4] | SUN Shuqing, DING Wei, SUN Rui, ZHANG Xicai, LAN Guoyu, CHEN Wei, YANG Chuan, WU Zhixiang. Soil Bacterial Community of Rubber Plantations of Different Ages of Stand: Composition and Diversity Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 93-100. |
[5] | YIN Tingting, LI Zhihui, SU Jiahe, WU Shidi, XU Hongyan, HE Shuai, LIU Pei, LI Xiangqian. Nano-selenium Prepared by Biological Method: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 33-41. |
[6] | DONG Wencai, LIU Xianbin, LI Hongmei, ZHAO Shuangmei, BAO Jinmei, SHEN Jianping, LIANG Fang, LU Mei. Effects of Calcium Supply with Varying Levels on the Growth and Development of Woody Ornamental Plants [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 42-50. |
[7] | LIU Peng, WU Qiaohua, SHU Huili, ZHOU Liyin, WANG Xiaodong. The Response Mechanism of Camellia oleifera to Stress Factors: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 24-28. |
[8] | ZHANG Riqian, HE Mengying, QIAN Meijiao, ZHANG Xue, LIU Yilin, WAN Chuanjie, ZHANG Zhen. Alternanthera philoxeroides in Different Habitats: Occurrence of Stamen Feminization and Its Distribution Pattern Within the Inflorescence [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 29-35. |
[9] | ZHOU Xianlin, QIN Qin, MENG Yongming, WANG Long, HU Chengcheng, ZHU Haiyong, LAI Bo. Effects of Different Amendments on Saline-alkali Soil Improvement and Cotton Growth in Xinjiang [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 91-96. |
[10] | WANG Yan, XU Meimei, SHAN Lianhui, GOU Huan, TONG Yujia, AN Xinying. Current Status of Research on Major Plant Epidemic Based on Bibliometrics and Patentometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 144-154. |
[11] | GAO Wenrui, SUN Yanjun, HAN Bing, LI Decui, FEI Cong, WANG Xiansheng, XU Gang. Effects of Low Light on Plant Growth and Fruit Development of Watermelon [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 39-45. |
[12] | WANG Huanhuan, YANG Qin, PU Hongmei, HE Jin, CHENG Hua, HAN Min, ZHAO Xuechun, WANG Zhiwei, JIN Baocheng. Accuracy Analysis of Soybean Vegetation Coverage Measurement by Photo Line Transect Method [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 111-118. |
[13] | LI Shuang, ZHANG Xiaojun, WANG Ping, XU Yongju, HOU Rui, ZHU Xunlu, LIU Xing, ZHANG Xiangqiong, YUE Fuliang, LI Wenjun, ZHANG Xiaohong. Comparison of Peanut Sprout Output Coefficients Under Different Peanut Genetic Backgrounds [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 17-23. |
[14] | LI Zhengpu, TONG Jing, WANG Suna, LI Yanyan, WANG Liping, LIANG Hao, WU Zhanhui. Effect of Photoperiod on Yield and Quality of Water Dropwort in Plant Factory [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 38-42. |
[15] | WANG Qing, FANG Wensheng, LI Yuan, WANG Qiuxia, YAN Dongdong, CAO Aocheng. Advances in New Nematicides and Their Action Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 100-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||