Chinese Agricultural Science Bulletin ›› 2023, Vol. 39 ›› Issue (25): 109-115.doi: 10.11924/j.issn.1000-6850.casb2022-0857
Previous Articles Next Articles
ZHU Shengcui1,2(), LI Guoting3, WEI Yonglin4, MA Fulin4, JIN Xianling4, CAO Yingmin4
Received:
2022-10-17
Revised:
2023-06-13
Online:
2023-09-05
Published:
2023-08-28
ZHU Shengcui, LI Guoting, WEI Yonglin, MA Fulin, JIN Xianling, CAO Yingmin. Study on Predicting Models of Grass Yield in North Shore of Qinghai Lake[J]. Chinese Agricultural Science Bulletin, 2023, 39(25): 109-115.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2022-0857
草地类型 | 站点 | 项目 | 模型编号 | 模型 | X1 | Y | R | Sig. |
---|---|---|---|---|---|---|---|---|
高寒草甸 | 海晏 | 地面产量 | 1 | Y=0.742X1+5.498X2+3.705X3-1501.087 | 7月围栏内牧草产量 | 8月围栏内牧草产量 | 0.875 | 0.001 |
2 | Y=1.061X1+5.118X2-8.763X3-1093.994 | 7月围栏外牧草产量 | 8月围栏外牧草产量 | 0.928 | 0.000 | |||
3 | Y=0.955X1-8.121X2+2.646X3+1359.474 | 8月围栏内牧草产量 | 9月围栏内牧草产量 | 0.935 | 0.000 | |||
4 | Y=0.885X1+2.064X2+4.665X3-1338.622 | 8月围栏外牧草产量 | 9月围栏外牧草产量 | 0.880 | 0.001 | |||
NDVI | 5 | Y=149.123X1+13.968X2-3.791X3-10442.408 | 7月NDVI | 8月围栏内牧草产量 | 0.780 | 0.013 | ||
6 | Y=97.828X1+9.672X2+5.607X3-7714.159 | 7月NDVI | 8月围栏外牧草产量 | 0.833 | 0.004 | |||
7 | Y=152.316X1+1.454X2+6.478X3-7737.137 | 8月NDVI | 9月围栏内牧草产量 | 0.638 | 0.112 | |||
8 | Y=129.630X1-6.681X2+17.032X3-6368.673 | 8月NDVI | 9月围栏外牧草产量 | 0.736 | 0.043 | |||
祁连 | 地面产量 | 1 | Y=0.881X1+12.452X2-9.079X3-2786.505 | 7月围栏内牧草产量 | 8月围栏内牧草产量 | 0.938 | 0.000 | |
2 | Y=0.506X1+8.190X2-14.340X3+411.757 | 7月围栏外牧草产量 | 8月围栏外牧草产量 | 0.643 | 0.108 | |||
3 | Y=0.735X1+25.746X2+7.128X3-7399.981 | 8月围栏内牧草产量 | 9月围栏内牧草产量 | 0.802 | 0.008 | |||
4 | Y=1.002X1+17.311X2-4.165X3-5345.402 | 8月围栏外牧草产量 | 9月围栏外牧草产量 | 0.794 | 0.010 | |||
NDVI | 5 | Y=-82.947X1+9.563X2+20.261X3+3632.435 | 7月NDVI | 8月围栏内牧草产量 | 0.500 | 0.347 | ||
6 | Y=17.471X1+4.151X2+8.050X3+1591.984 | 7月NDVI | 8月围栏外牧草产量 | 0.243 | 0.874 | |||
7 | Y=-100.566X1+20.403X2-5.396X3+3172.799 | 8月NDVI | 9月围栏内牧草产量 | 0.312 | 0.758 | |||
8 | Y=91.071X1+2.422X2-9.676X3+1043.772 | 8月NDVI | 9月围栏外牧草产量 | 0.227 | 0.894 | |||
高寒草原 | 央隆 | 地面产量 | 1 | Y=0.679X1+3.267X2+7.432X3-1361.544 | 7月围栏内牧草产量 | 8月围栏内牧草产量 | 0.841 | 0.003 |
2 | Y=0.817X1+2.103X2+3.756X3-997.380 | 7月围栏外牧草产量 | 8月围栏外牧草产量 | 0.905 | 0.000 | |||
3 | Y=0.718X1+3.386X2-3.816X3-348.544 | 8月围栏内牧草产量 | 9月围栏内牧草产量 | 0.915 | 0.000 | |||
4 | Y=0.755X1-0.382X2+1.062X3+124.529 | 8月围栏外牧草产量 | 9月围栏外牧草产量 | 0.960 | 0.000 | |||
NDVI | 5 | Y=21.818X1+0.263X2-1.501X3+772.198 | 7月NDVI | 8月围栏内牧草产量 | 0.310 | 0.763 | ||
6 | Y=19.719X1-2.007X2-0.563X3+1314.169 | 7月NDVI | 8月围栏外牧草产量 | 0.294 | 0.792 | |||
7 | Y=45.042X1+1.574X2-1.174X3-288.423 | 8月NDVI | 9月围栏内牧草产量 | 0.561 | 0.266 | |||
8 | Y=41.307X1-1.182X2-0.673X3-46.132 | 8月NDVI | 9月围栏外牧草产量 | 0.549 | 0.289 | |||
温性草原 | 刚察 | 地面产量 | 1 | Y=1.745X1-0.306X2-0.039X3+543.300 | 7月围栏内牧草产量 | 8月围栏内牧草产量 | 0.583 | 0.189 |
2 | Y=0.919X1+1.056X2+0.437X3+735.005 | 7月围栏外牧草产量 | 8月围栏外牧草产量 | 0.260 | 0.849 | |||
3 | Y=1.264X1-7.401X2-3.677X3+1860.316 | 8月围栏内牧草产量 | 9月围栏内牧草产量 | 0.891 | 0.000 | |||
4 | Y=0.662X1+2.489X2-36.724X3+3063.706 | 8月围栏外牧草产量 | 9月围栏外牧草产量 | 0.725 | 0.036 | |||
NDVI | 5 | Y=62.806X1+5.393X2-3.927X3-910.407 | 7月NDVI | 8月围栏内牧草产量 | 0.291 | 0.798 | ||
6 | Y=47.265X1+2.804X2-1.020X3-386.963 | 7月NDVI | 8月围栏外牧草产量 | 0.302 | 0.778 | |||
7 | Y=26.361X1+16.074X2-48.824X3+1946.429 | 8月NDVI | 9月围栏内牧草产量 | 0.598 | 0.167 | |||
8 | Y=14.202X1+3.787X2-18.907X3+1065.724 | 8月NDVI | 9月围栏外牧草产量 | 0.639 | 0.111 |
草地类型 | 站点 | 项目 | 模型编号 | 模型 | X1 | Y | R | Sig. |
---|---|---|---|---|---|---|---|---|
高寒草甸 | 海晏 | 地面产量 | 1 | Y=0.742X1+5.498X2+3.705X3-1501.087 | 7月围栏内牧草产量 | 8月围栏内牧草产量 | 0.875 | 0.001 |
2 | Y=1.061X1+5.118X2-8.763X3-1093.994 | 7月围栏外牧草产量 | 8月围栏外牧草产量 | 0.928 | 0.000 | |||
3 | Y=0.955X1-8.121X2+2.646X3+1359.474 | 8月围栏内牧草产量 | 9月围栏内牧草产量 | 0.935 | 0.000 | |||
4 | Y=0.885X1+2.064X2+4.665X3-1338.622 | 8月围栏外牧草产量 | 9月围栏外牧草产量 | 0.880 | 0.001 | |||
NDVI | 5 | Y=149.123X1+13.968X2-3.791X3-10442.408 | 7月NDVI | 8月围栏内牧草产量 | 0.780 | 0.013 | ||
6 | Y=97.828X1+9.672X2+5.607X3-7714.159 | 7月NDVI | 8月围栏外牧草产量 | 0.833 | 0.004 | |||
7 | Y=152.316X1+1.454X2+6.478X3-7737.137 | 8月NDVI | 9月围栏内牧草产量 | 0.638 | 0.112 | |||
8 | Y=129.630X1-6.681X2+17.032X3-6368.673 | 8月NDVI | 9月围栏外牧草产量 | 0.736 | 0.043 | |||
祁连 | 地面产量 | 1 | Y=0.881X1+12.452X2-9.079X3-2786.505 | 7月围栏内牧草产量 | 8月围栏内牧草产量 | 0.938 | 0.000 | |
2 | Y=0.506X1+8.190X2-14.340X3+411.757 | 7月围栏外牧草产量 | 8月围栏外牧草产量 | 0.643 | 0.108 | |||
3 | Y=0.735X1+25.746X2+7.128X3-7399.981 | 8月围栏内牧草产量 | 9月围栏内牧草产量 | 0.802 | 0.008 | |||
4 | Y=1.002X1+17.311X2-4.165X3-5345.402 | 8月围栏外牧草产量 | 9月围栏外牧草产量 | 0.794 | 0.010 | |||
NDVI | 5 | Y=-82.947X1+9.563X2+20.261X3+3632.435 | 7月NDVI | 8月围栏内牧草产量 | 0.500 | 0.347 | ||
6 | Y=17.471X1+4.151X2+8.050X3+1591.984 | 7月NDVI | 8月围栏外牧草产量 | 0.243 | 0.874 | |||
7 | Y=-100.566X1+20.403X2-5.396X3+3172.799 | 8月NDVI | 9月围栏内牧草产量 | 0.312 | 0.758 | |||
8 | Y=91.071X1+2.422X2-9.676X3+1043.772 | 8月NDVI | 9月围栏外牧草产量 | 0.227 | 0.894 | |||
高寒草原 | 央隆 | 地面产量 | 1 | Y=0.679X1+3.267X2+7.432X3-1361.544 | 7月围栏内牧草产量 | 8月围栏内牧草产量 | 0.841 | 0.003 |
2 | Y=0.817X1+2.103X2+3.756X3-997.380 | 7月围栏外牧草产量 | 8月围栏外牧草产量 | 0.905 | 0.000 | |||
3 | Y=0.718X1+3.386X2-3.816X3-348.544 | 8月围栏内牧草产量 | 9月围栏内牧草产量 | 0.915 | 0.000 | |||
4 | Y=0.755X1-0.382X2+1.062X3+124.529 | 8月围栏外牧草产量 | 9月围栏外牧草产量 | 0.960 | 0.000 | |||
NDVI | 5 | Y=21.818X1+0.263X2-1.501X3+772.198 | 7月NDVI | 8月围栏内牧草产量 | 0.310 | 0.763 | ||
6 | Y=19.719X1-2.007X2-0.563X3+1314.169 | 7月NDVI | 8月围栏外牧草产量 | 0.294 | 0.792 | |||
7 | Y=45.042X1+1.574X2-1.174X3-288.423 | 8月NDVI | 9月围栏内牧草产量 | 0.561 | 0.266 | |||
8 | Y=41.307X1-1.182X2-0.673X3-46.132 | 8月NDVI | 9月围栏外牧草产量 | 0.549 | 0.289 | |||
温性草原 | 刚察 | 地面产量 | 1 | Y=1.745X1-0.306X2-0.039X3+543.300 | 7月围栏内牧草产量 | 8月围栏内牧草产量 | 0.583 | 0.189 |
2 | Y=0.919X1+1.056X2+0.437X3+735.005 | 7月围栏外牧草产量 | 8月围栏外牧草产量 | 0.260 | 0.849 | |||
3 | Y=1.264X1-7.401X2-3.677X3+1860.316 | 8月围栏内牧草产量 | 9月围栏内牧草产量 | 0.891 | 0.000 | |||
4 | Y=0.662X1+2.489X2-36.724X3+3063.706 | 8月围栏外牧草产量 | 9月围栏外牧草产量 | 0.725 | 0.036 | |||
NDVI | 5 | Y=62.806X1+5.393X2-3.927X3-910.407 | 7月NDVI | 8月围栏内牧草产量 | 0.291 | 0.798 | ||
6 | Y=47.265X1+2.804X2-1.020X3-386.963 | 7月NDVI | 8月围栏外牧草产量 | 0.302 | 0.778 | |||
7 | Y=26.361X1+16.074X2-48.824X3+1946.429 | 8月NDVI | 9月围栏内牧草产量 | 0.598 | 0.167 | |||
8 | Y=14.202X1+3.787X2-18.907X3+1065.724 | 8月NDVI | 9月围栏外牧草产量 | 0.639 | 0.111 |
模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | 模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
实测值 | 预测值 | 实测值 | 预测值 | ||||||||
1 | 2018 | 5715 | 4778 | 83.60 | 83.59 | 3 | 2018 | 3877 | 4908 | 73.41 | 82.92 |
2019 | 4530 | 4984 | 89.98 | 2019 | 4776 | 3754 | 78.60 | ||||
2020 | 5619 | 6900 | 77.20 | 2020 | 4835 | 4678 | 96.75 | ||||
5 | 2018 | 5715 | 6540 | 85.56 | 85.35 | 7 | 2018 | 3877 | 4997 | 71.11 | 65.21 |
2019 | 4530 | 4322 | 95.41 | 2019 | 4776 | 2728 | 57.12 | ||||
2020 | 5619 | 4219 | 75.08 | 2020 | 4835 | 3259 | 67.40 | ||||
2 | 2018 | 5069 | 4561 | 89.98 | 93.88 | 4 | 2018 | 3516 | 3909 | 88.82 | 62.95 |
2019 | 4800 | 4491 | 93.56 | 2019 | 2126 | 3685 | 26.67 | ||||
2020 | 4311 | 4393 | 98.10 | 2020 | 4688 | 3439 | 73.36 | ||||
6 | 2018 | 5069 | 4551 | 89.78 | 71.98 | 8 | 2018 | 3516 | 3069 | 87.29 | 59.16 |
2019 | 4800 | 2797 | 58.27 | 2019 | 2126 | 1131 | 53.20 | ||||
2020 | 4311 | 2927 | 67.90 | 2020 | 4688 | 1734 | 36.99 |
模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | 模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
实测值 | 预测值 | 实测值 | 预测值 | ||||||||
1 | 2018 | 5715 | 4778 | 83.60 | 83.59 | 3 | 2018 | 3877 | 4908 | 73.41 | 82.92 |
2019 | 4530 | 4984 | 89.98 | 2019 | 4776 | 3754 | 78.60 | ||||
2020 | 5619 | 6900 | 77.20 | 2020 | 4835 | 4678 | 96.75 | ||||
5 | 2018 | 5715 | 6540 | 85.56 | 85.35 | 7 | 2018 | 3877 | 4997 | 71.11 | 65.21 |
2019 | 4530 | 4322 | 95.41 | 2019 | 4776 | 2728 | 57.12 | ||||
2020 | 5619 | 4219 | 75.08 | 2020 | 4835 | 3259 | 67.40 | ||||
2 | 2018 | 5069 | 4561 | 89.98 | 93.88 | 4 | 2018 | 3516 | 3909 | 88.82 | 62.95 |
2019 | 4800 | 4491 | 93.56 | 2019 | 2126 | 3685 | 26.67 | ||||
2020 | 4311 | 4393 | 98.10 | 2020 | 4688 | 3439 | 73.36 | ||||
6 | 2018 | 5069 | 4551 | 89.78 | 71.98 | 8 | 2018 | 3516 | 3069 | 87.29 | 59.16 |
2019 | 4800 | 2797 | 58.27 | 2019 | 2126 | 1131 | 53.20 | ||||
2020 | 4311 | 2927 | 67.90 | 2020 | 4688 | 1734 | 36.99 |
模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | 模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
实测值 | 预测值 | 实测值 | 预测值 | ||||||||
1 | 2018 | 10746 | 10657 | 99.17 | 92.66 | 3 | 2018 | 8294 | 7571 | 91.28 | 80.76 |
2019 | 9285 | 7357 | 79.24 | 2019 | 9405 | 7496 | 79.70 | ||||
2020 | 11550 | 11502 | 99.58 | 2020 | 12630 | 9006 | 71.31 | ||||
5 | 2018 | 10746 | 7290 | 67.84 | 55.75 | 7 | 2018 | 8294 | 4498 | 54.23 | 37.01 |
2019 | 9285 | 4862 | 52.36 | 2019 | 9405 | 3257 | 34.63 | ||||
2020 | 11550 | 5434 | 47.05 | 2020 | 12630 | 2801 | 22.18 | ||||
2 | 2018 | 10908 | 6587 | 60.39 | 71.19 | 4 | 2018 | 5885 | 9805 | 33.39 | 65.62 |
2019 | 5355 | 4404 | 82.24 | 2019 | 7108.5 | 4732 | 66.57 | ||||
2020 | 7380 | 5236 | 70.95 | 2020 | 6843 | 6632 | 96.92 | ||||
6 | 2018 | 10908 | 4616 | 42.32 | 69.50 | 8 | 2018 | 5885 | 4370 | 74.26 | 82.23 |
2019 | 5355 | 5109 | 95.41 | 2019 | 7108.5 | 5895 | 82.93 | ||||
2020 | 7380 | 5223 | 70.77 | 2020 | 6843 | 6124 | 89.49 |
模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | 模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
实测值 | 预测值 | 实测值 | 预测值 | ||||||||
1 | 2018 | 10746 | 10657 | 99.17 | 92.66 | 3 | 2018 | 8294 | 7571 | 91.28 | 80.76 |
2019 | 9285 | 7357 | 79.24 | 2019 | 9405 | 7496 | 79.70 | ||||
2020 | 11550 | 11502 | 99.58 | 2020 | 12630 | 9006 | 71.31 | ||||
5 | 2018 | 10746 | 7290 | 67.84 | 55.75 | 7 | 2018 | 8294 | 4498 | 54.23 | 37.01 |
2019 | 9285 | 4862 | 52.36 | 2019 | 9405 | 3257 | 34.63 | ||||
2020 | 11550 | 5434 | 47.05 | 2020 | 12630 | 2801 | 22.18 | ||||
2 | 2018 | 10908 | 6587 | 60.39 | 71.19 | 4 | 2018 | 5885 | 9805 | 33.39 | 65.62 |
2019 | 5355 | 4404 | 82.24 | 2019 | 7108.5 | 4732 | 66.57 | ||||
2020 | 7380 | 5236 | 70.95 | 2020 | 6843 | 6632 | 96.92 | ||||
6 | 2018 | 10908 | 4616 | 42.32 | 69.50 | 8 | 2018 | 5885 | 4370 | 74.26 | 82.23 |
2019 | 5355 | 5109 | 95.41 | 2019 | 7108.5 | 5895 | 82.93 | ||||
2020 | 7380 | 5223 | 70.77 | 2020 | 6843 | 6124 | 89.49 |
模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | 模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
实测值 | 预测值 | 实测值 | 预测值 | ||||||||
1 | 2018 | 5480 | 2011 | 36.70 | 49.14 | 3 | 2018 | 1114 | 4077 | -165.98 | -1.36 |
2019 | 2505 | 3953 | 42.20 | 2019 | 1655 | 2024 | 77.70 | ||||
2020 | 1815 | 2386 | 68.54 | 2020 | 1808 | 1522 | 84.18 | ||||
5 | 2018 | 5480 | 1173 | 21.41 | 62.86 | 7 | 2018 | 1114 | 1173 | 94.70 | 87.81 |
2019 | 2505 | 1839 | 73.41 | 2019 | 1655 | 1982 | 80.24 | ||||
2020 | 1815 | 1702 | 93.77 | 2020 | 1808 | 2016 | 88.50 | ||||
2 | 2018 | 3480 | 2335 | 67.10 | 76.23 | 4 | 2018 | 870 | 2715 | -112.07 | 15.53 |
2019 | 1020 | 1002 | 98.24 | 2019 | 1280 | 853 | 66.64 | ||||
2020 | 3750 | 2376 | 63.36 | 2020 | 389 | 358 | 92.03 | ||||
6 | 2018 | 3480 | 841 | 24.17 | 38.66 | 8 | 2018 | 870 | 840 | 96.55 | -8.00 |
2019 | 1020 | 1507 | 52.25 | 2019 | 1280 | 1497 | 83.05 | ||||
2020 | 3750 | 1483 | 39.55 | 2020 | 389 | 1570 | -203.60 |
模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | 模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
实测值 | 预测值 | 实测值 | 预测值 | ||||||||
1 | 2018 | 5480 | 2011 | 36.70 | 49.14 | 3 | 2018 | 1114 | 4077 | -165.98 | -1.36 |
2019 | 2505 | 3953 | 42.20 | 2019 | 1655 | 2024 | 77.70 | ||||
2020 | 1815 | 2386 | 68.54 | 2020 | 1808 | 1522 | 84.18 | ||||
5 | 2018 | 5480 | 1173 | 21.41 | 62.86 | 7 | 2018 | 1114 | 1173 | 94.70 | 87.81 |
2019 | 2505 | 1839 | 73.41 | 2019 | 1655 | 1982 | 80.24 | ||||
2020 | 1815 | 1702 | 93.77 | 2020 | 1808 | 2016 | 88.50 | ||||
2 | 2018 | 3480 | 2335 | 67.10 | 76.23 | 4 | 2018 | 870 | 2715 | -112.07 | 15.53 |
2019 | 1020 | 1002 | 98.24 | 2019 | 1280 | 853 | 66.64 | ||||
2020 | 3750 | 2376 | 63.36 | 2020 | 389 | 358 | 92.03 | ||||
6 | 2018 | 3480 | 841 | 24.17 | 38.66 | 8 | 2018 | 870 | 840 | 96.55 | -8.00 |
2019 | 1020 | 1507 | 52.25 | 2019 | 1280 | 1497 | 83.05 | ||||
2020 | 3750 | 1483 | 39.55 | 2020 | 389 | 1570 | -203.60 |
模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | 模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
实测值 | 预测值 | 实测值 | 预测值 | ||||||||
1 | 2018 | 2265 | 3534 | 43.97 | 39.85 | 3 | 2018 | 2475 | 2810 | 86.46 | 93.17 |
2019 | 2760 | 5192 | 11.88 | 2019 | 3655 | 3442 | 94.17 | ||||
2020 | 3255 | 4437 | 63.69 | 2020 | 4043 | 4088 | 98.89 | ||||
5 | 2018 | 2265 | 2314 | 97.84 | 59.21 | 7 | 2018 | 2475 | 3003 | 78.67 | 77.04 |
2019 | 2760 | 4837 | 24.75 | 2019 | 3655 | 4406 | 79.45 | ||||
2020 | 3255 | 4718 | 55.05 | 2020 | 4043 | 5134 | 73.02 | ||||
2 | 2018 | 1785 | 2558 | 56.69 | 61.51 | 4 | 2018 | 2040 | 2307 | 86.91 | 53.22 |
2019 | 2040 | 2835 | 61.03 | 2019 | 1280 | 2804 | -19.06 | ||||
2020 | 2175 | 2897 | 66.80 | 2020 | 3096 | 3350 | 91.80 | ||||
6 | 2018 | 1785 | 1699 | 95.18 | 51.35 | 8 | 2018 | 2040 | 1043 | 51.13 | 60.54 |
2019 | 2040 | 3617 | 22.70 | 2019 | 1280 | 1718 | 65.78 | ||||
2020 | 2175 | 3563 | 36.18 | 2020 | 3096 | 2003 | 64.70 |
模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | 模型编号 | 年份 | 产量/(kg/hm2) | 准确率/% | 平均准确率/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
实测值 | 预测值 | 实测值 | 预测值 | ||||||||
1 | 2018 | 2265 | 3534 | 43.97 | 39.85 | 3 | 2018 | 2475 | 2810 | 86.46 | 93.17 |
2019 | 2760 | 5192 | 11.88 | 2019 | 3655 | 3442 | 94.17 | ||||
2020 | 3255 | 4437 | 63.69 | 2020 | 4043 | 4088 | 98.89 | ||||
5 | 2018 | 2265 | 2314 | 97.84 | 59.21 | 7 | 2018 | 2475 | 3003 | 78.67 | 77.04 |
2019 | 2760 | 4837 | 24.75 | 2019 | 3655 | 4406 | 79.45 | ||||
2020 | 3255 | 4718 | 55.05 | 2020 | 4043 | 5134 | 73.02 | ||||
2 | 2018 | 1785 | 2558 | 56.69 | 61.51 | 4 | 2018 | 2040 | 2307 | 86.91 | 53.22 |
2019 | 2040 | 2835 | 61.03 | 2019 | 1280 | 2804 | -19.06 | ||||
2020 | 2175 | 2897 | 66.80 | 2020 | 3096 | 3350 | 91.80 | ||||
6 | 2018 | 1785 | 1699 | 95.18 | 51.35 | 8 | 2018 | 2040 | 1043 | 51.13 | 60.54 |
2019 | 2040 | 3617 | 22.70 | 2019 | 1280 | 1718 | 65.78 | ||||
2020 | 2175 | 3563 | 36.18 | 2020 | 3096 | 2003 | 64.70 |
[1] |
doi: 10.3390/rs8100876 URL |
[2] |
毛留喜, 侯英雨, 钱拴, 等. 牧草产量的遥感估算与载畜能力研究[J]. 农业工程学报, 2008(8):1357-1363.
|
[3] |
罗谨, 王军邦, 杨永胜, 等. 1991—2015年三江源河曲高寒草甸干湿状况及牧草产量变化的气候归因研究[J]. 冰川冻土, 2021, 43(5):1542-1550.
doi: 10.7522/j.issn.1000-0240.2021.0104 |
[4] |
李建伟, 罗志娜, 王超, 等. 昭苏县天然草地牧草产量与气象因素的关系研究[J]. 中国农学通报, 2022, 38(11):58-63.
doi: 10.11924/j.issn.1000-6850.casb2021-0468 |
[5] |
刘正恩, 王昱生, 潘介正, 等. 羊草草原地上生物量的预测[J]. 生态学杂志, 2004, 23(4):179-183.
|
[6] |
doi: 10.1016/0304-3800(89)90008-2 URL |
[7] |
doi: 10.1016/j.jaridenv.2006.11.013 URL |
[8] |
doi: 10.1016/j.agsy.2006.06.001 URL |
[9] |
王江山. 青海省生态环境监测系统[M]. 北京: 气象出版社, 2004:131-136.
|
[10] |
doi: 10.1016/S1537-5110(02)00220-9 URL |
[11] |
朱玉洁. 紫花苜蓿生长模拟模型(ALFASM)研究[D]. 北京: 中国农业大学, 2004:8-51.
|
[12] |
杨秀梅. 基于GIS和牧草模型对四川省主栽牧草潜在产量的研究[D]. 雅安: 四川农业大学, 2015:2-6.
|
[13] |
王有丰. 气候因子对天然草地牧草产量的影响[J]. 贵州农业科学, 2009, 37(6):63-65.
|
[14] |
李英年. 高寒草甸地区冷季水分资源及对牧草产量的可能影响[J]. 草地学报, 2001, 10(3):15-20.
|
[15] |
刘明春, 马兴祥, 尹东, 等. 天祝草甸、草原草场植被生物量形成的气象条件及预测模型[J]. 草业科学, 2001, 18(3):65-69.
|
[16] |
李英年, 周华坤, 沈振西. 高寒草甸牧草产量形成过程及与气象因子的关联分析[J]. 草地学报, 2001, 9(3):232-238.
doi: 10.11733/j.issn.1007-0435.2001.03.014 |
[17] |
陈利军, 刘高焕, 冯险峰. 遥感在植被净第一性生产力研究中的应用[J]. 生态学杂志, 2002, 21(2):53-57.
|
[18] |
黄敬峰, 王秀珍, 王人潮, 等. 天然草地牧草产量遥感综合监测预测模型研究[J]. 遥感学报, 2001, 5(1):70-74.
|
[19] |
毛留喜, 侯英雨, 钱拴, 等. 牧草产量的遥感估算与载畜能力研究[J]. 农业工程学报, 2008, 24(8):147-151.
|
[20] |
doi: 10.1080/01431160050505829 URL |
[21] |
王羲之, 杜固桢, 梁天刚, 等. 基于RS和GIS的甘南草地生产力估测模型构建极其降水量空间分布模式的确立[J]. 草业学报, 2001, 10(2):95-102.
|
[22] |
海北藏族自治州人民政府. 草场资源[EB/OL].(2022-10-12).
|
[23] |
张连义, 张静祥, 赛音吉, 等. 亚典型草原植被生物量遥感监测模型-以锡林郭勒盟为例[J]. 草业科学, 2008, 25(4):31-35.
|
[24] |
朱生翠, 周秉荣, 魏永林, 等. 气候变化对青海湖北岸天然牧草生长发育的影响[J]. 干旱气象, 2020, 38(5):804-809.
|
[25] |
徐微信, 丽英年, 马守存, 等. 1982—2013年黄河源区植被变化趋势及其对气候变化的响应[J]. 干旱气象, 2018, 36(2):226-233.
doi: 10.11755/j.issn.1006-7639(2018)-02-0226 |
[26] |
doi: 10.1016/j.fcr.2018.01.017 URL |
[27] |
doi: 10.1111/grs.2015.61.issue-3 URL |
[28] |
张连义. 锡林郭勒草地牧草产量遥感监测模型的研究[D]. 呼和浩特: 内蒙古农业大学, 2006:66-72.
|
[29] |
徐玲玲, 钱拴. 内蒙古天然草场牧草产量的气象估算模型[J]. 中国草地学报, 2011, 33(1):54-58.
|
[30] |
黄晓东, 李霞, 梁天刚. 北疆地区不同草地类型MODIS植被指数变化动态及其与气候因子的关系[J]. 兰州大学学报(自然科学版), 2007, 43(3):42-47.
|
[31] |
钱拴. 中国主要天然草地产草量气象预测方法[J]. 生态学杂志, 2009, 28(6):1201-1205.
|
[1] | TANG Yang, LIU Kequn, YANG Junjie, DENG Huanhuan, DENG Aijuan, CHE Junzhi. Prediction Model of Meteorological Risk Grade for Potato Late Blight in Hubei Province Based on Discriminant Analysis [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 74-78. |
[2] | LIAO Jun, FANG Hongsheng, SU Youjian, WANG Yejun, ZHANG Yongli, SUN Yulong, FANG Yage. Change Law of Water Loss in Fresh Tea Leaves Under Different Spreading Environments [J]. Chinese Agricultural Science Bulletin, 2023, 39(4): 160-164. |
[3] | LAN Bo, YIN Changfa, CHEN Jian, SHI Weitao, YANG Aiping, ZHANG Xiaoyang, KUANG Hongmin, XIAO Hui, LI Xiangmin, YANG Yingqing. Discriminant Analysis and Prediction of Rice Blast Epidemic Based on Virulence of Magnaporthe oryzae and Meteorological Factors [J]. Chinese Agricultural Science Bulletin, 2023, 39(25): 116-121. |
[4] | LEI Yuhong, LI Chunhui, TUO Shuzhen, ZHANG Yingde, MA Xiulan, GAO Chengzhong, ZHONG Cun, YAN Liangdong. Study on the Yield Forecast Model of Qaidam Lycium Barbarum based on Key Meteorological Factors [J]. Chinese Agricultural Science Bulletin, 2023, 39(23): 55-61. |
[5] | ZHANG Xiaoyun, KONG Xiangping. The Influence of Meteorological Factors on Mature Period of Stipa Herbage in Alpine Grassland [J]. Chinese Agricultural Science Bulletin, 2023, 39(22): 132-137. |
[6] | BAI Shanshan, WANG Zhaofeng, SONG Xiliang, WANG Guoliang, ZHANG Xiaoxia, WANG Benting, JIANG Huixin. The Growth Performance of Pennisetum Forage Varieties in Shandong [J]. Chinese Agricultural Science Bulletin, 2023, 39(19): 131-136. |
[7] | YANG Yanling, PAN Cunliang, CHEN Yanli, SHI Kan, BAI Songzhu, SIDIKE Maimaiti. Study on Variation Characteristics and Forecasting Methods of the Initial Flowering Period of Apricot Blossoms in Hami Oasis [J]. Chinese Agricultural Science Bulletin, 2023, 39(14): 105-109. |
[8] | WANG Lijia, TANG Zeng. Influence of Rural Regulations and Folk Agreements on Herders’ Decision-making Behavior on Reducing Grazing Intensity [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 157-164. |
[9] | LOU Zhongshan. Phenological Change Characteristics of Stipa Grass at Flowering Stage on Alpine Grassland and Their Influencing Factors [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 129-134. |
[10] | ZHOU Chengyang, LIU Hao, HUANG Ding, WANG Jie, LI Tingyu, WANG Mingli, ZHANG Yingjun, LI Chengyu, ZHAI Xiyue, YANG Wuteng. Climate-smart Grassland Management Technology Helps the Revitalization of Pastoral Areas [J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 156-164. |
[11] | LI Jianwei, LUO Zhina, WANG Chao, FAN Tianwen. The Relationship Between Forage Yield of Natural Grassland and Meteorological Factors in Zhaosu [J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 58-63. |
[12] | Yang Guohang, Li Qiong, He Lizhao, Gu Jing, Niu Jing, Zhang Haiou, Zheng Zijian, Zhao Zhen. Study on the Migration, Transformation and Prediction Model of Cadmium in the Whole Growth Stage of Late Rice [J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 1-10. |
[13] | Dai Lei, Wang Zhijie, Zhang Wansheng. Analysis and Prediction of Land Resources Carrying Capacity of Guiyang City from 1998 to 2018 [J]. Chinese Agricultural Science Bulletin, 2021, 37(1): 108-115. |
[14] | Wang Qiujing, Ma Guozhong, Wang Ping, Zhao Kewei, Yang Xiaoqiang, Yu Yingnan, Wang Ming, Jiang Lixia. Three Prediction Methods of Rice Heat Index in Heilongjiang Province: A Comparative Analysis [J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 1-7. |
[15] | Tian Yixin, Gao Fengju, Cao Pengpeng, Gao Qi, Li Hongbo. Orthogonal Polynomial Regression: Application in the Prediction Model of High-protein Soybean Fertilization and Economic Benefit [J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 31-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||