Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (29): 20-27.doi: 10.11924/j.issn.1000-6850.casb2020-0304
Special Issue: 生物技术
Previous Articles Next Articles
Guan Sijing1(), Gao Jing1(
), Xu Rongrong1, Ge Tiantian1, Wang Nan2, Yan Yonggang1, Zhang Gang1, Chen Ying1, Liu Aping1, Cheng Mengge1
Received:
2020-07-30
Revised:
2020-10-19
Online:
2021-10-15
Published:
2021-10-29
Contact:
Gao Jing
E-mail:gsj127810@163.com;gaojing@sntcm.edu.cn
CLC Number:
Guan Sijing, Gao Jing, Xu Rongrong, Ge Tiantian, Wang Nan, Yan Yonggang, Zhang Gang, Chen Ying, Liu Aping, Cheng Mengge. Auxin Response Factor (ARF) Gene Family in Glycyrrhiza uralensis Fisch.: Identification and Expression Analysis[J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 20-27.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0304
基因名称 | 基因号 | 氨基酸数/aa | 分子量/kDa | 等电点 | 不稳定系数 | 亚细胞定位 |
---|---|---|---|---|---|---|
GuARF1 | Glyur000846s00019247.1 | 301 | 33.07 | 5.93 | 56.52 | Nucleus |
GuARF2 | Glyur000322s00020885.1 | 606 | 66.04 | 6.14 | 40.06 | Nucleus |
GuARF3 | Glyur000066s00006209.1 | 749 | 82.15 | 7.59 | 47.87 | Nucleus |
GuARF4 | Glyur000081s00006796.1 | 711 | 78.74 | 6.64 | 51.32 | Nucleus |
GuARF5 | Glyur002712s00037647.1 | 665 | 73.65 | 8.50 | 43.03 | Nucleus |
GuARF6 | Glyur001170s00029947.1 | 945 | 104.37 | 6.06 | 64.68 | Nucleus |
GuARF7 | Glyur000250s00014115.1 | 646 | 72.05 | 7.68 | 57.28 | Nucleus |
GuARF8 | Glyur000413s00015469.1 | 856 | 95.42 | 6.27 | 61.46 | Nucleus |
GuARF9 | Glyur000325s00013489.1 | 725 | 80.45 | 7.81 | 52.50 | Nucleus |
GuARF10 | Glyur000156s00011992.1 | 780 | 87.06 | 6.08 | 52.35 | Nucleus |
基因名称 | 基因号 | 氨基酸数/aa | 分子量/kDa | 等电点 | 不稳定系数 | 亚细胞定位 |
---|---|---|---|---|---|---|
GuARF1 | Glyur000846s00019247.1 | 301 | 33.07 | 5.93 | 56.52 | Nucleus |
GuARF2 | Glyur000322s00020885.1 | 606 | 66.04 | 6.14 | 40.06 | Nucleus |
GuARF3 | Glyur000066s00006209.1 | 749 | 82.15 | 7.59 | 47.87 | Nucleus |
GuARF4 | Glyur000081s00006796.1 | 711 | 78.74 | 6.64 | 51.32 | Nucleus |
GuARF5 | Glyur002712s00037647.1 | 665 | 73.65 | 8.50 | 43.03 | Nucleus |
GuARF6 | Glyur001170s00029947.1 | 945 | 104.37 | 6.06 | 64.68 | Nucleus |
GuARF7 | Glyur000250s00014115.1 | 646 | 72.05 | 7.68 | 57.28 | Nucleus |
GuARF8 | Glyur000413s00015469.1 | 856 | 95.42 | 6.27 | 61.46 | Nucleus |
GuARF9 | Glyur000325s00013489.1 | 725 | 80.45 | 7.81 | 52.50 | Nucleus |
GuARF10 | Glyur000156s00011992.1 | 780 | 87.06 | 6.08 | 52.35 | Nucleus |
[1] | 李艳林, 高志红, 宋娟, 等. 植物生长素响应因子ARF与生长发育[J]. 植物生理学报, 2017, 53(10):1842-1858. |
[2] |
Singh V K, Rajkumar M S, Garg R, et al. Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea[J]. Scientific Reports, 2017, 7(1):10895.
doi: 10.1038/s41598-017-11327-5 URL |
[3] |
Tiwari S B, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription[J]. The Plant Cell, 2003, 15(2):533-543.
doi: 10.1105/tpc.008417 URL |
[4] |
Liscum E, Reed J W. Genetics of Aux/IAA and ARF action in plant growth and development[J]. Plant Molecular Biology, 2002, 49(3-4):387-400.
pmid: 12036262 |
[5] |
Lim P O, Lee I C, Kim J, et al. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity[J]. Journal of Experimental Botany, 2010, 61(5):1419-1430.
doi: 10.1093/jxb/erq010 URL |
[6] |
Ellis C M, Nagpal P, Young J C, et al. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana[J]. Development (Cambridge, England), 2005, 132(20):4563-4574.
doi: 10.1242/dev.02012 URL |
[7] |
Kelley D R, Arreola A, Gallagher T L, et al. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis[J]. Development (Cambridge, England), 2012, 139(6):1105-1109.
doi: 10.1242/dev.067918 URL |
[8] | Liu Z N, Miao L, Huo R X, et al. ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis[J]. Plant & cell Physiology, 2018, 59(1):179-189. |
[9] |
Wu Y F, Reed G W, Tian C Q. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction[J]. Development (Cambridge, England), 2006, 133(21):4211-4218.
doi: 10.1242/dev.02602 URL |
[10] |
Goetz M, Vivian-Smith A, Johnson S D, et al. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis[J]. The Plant Cell, 2006, 18(8):1873-1886.
doi: 10.1105/tpc.105.037192 URL |
[11] |
Wang B, Xue J S, Yu Y H, et al. Fine regulation of ARF17 for anther development and pollen formation[J]. BMC Plant Biology, 2017, 17(1):243.
doi: 10.1186/s12870-017-1185-1 pmid: 29258431 |
[12] |
Finet C, Berne-Dedieu A, Scutt C P, et al. Evolution of the ARF gene family in land plants: old domains, new tricks[J]. Molecular Biology and Evolution, 2013, 30(1):45-56.
doi: 10.1093/molbev/mss220 URL |
[13] | Wilmoth J C, Wang S, Tiwari S B, et al. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation[J]. Plant Journal for Cell & Molecular Biology, 2010, 43(1):118-130. |
[14] |
Feng Z H, Zhu J, Du X L, et al. Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana[J]. Planta, 2012, 236(4):1227-1237.
doi: 10.1007/s00425-012-1673-3 URL |
[15] |
Wang J W, Wang L J, Mao Y B, et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis[J]. The Plant Cell, 2005, 17(8):2204-2216.
doi: 10.1105/tpc.105.033076 URL |
[16] |
Mochida K, Sakurai T, Seki H, et al. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume[J]. The Plant Journal, 2017, 89(2):181-194.
doi: 10.1111/tpj.13385 URL |
[17] |
Chen C J, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[18] |
Wang D, Pei K, Fu Y, et al. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa)[J]. Gene, 2007, 394(1):13-24.
doi: 10.1016/j.gene.2007.01.006 URL |
[19] |
Zouine M, Fu Y Y, Wang H, et al. Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing[J]. PloS one, 2014, 9(1):e84203.
doi: 10.1371/journal.pone.0084203 URL |
[20] | Shen C J, Yue R Q, Sun T, et al. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula[J]. Frontiers in Plant Science, 2015, 6:73. |
[21] | 赵艳, 瓮巧云, 马海莲, 等. 谷子ARF基因家族的鉴定与生物信息学分析[J]. 植物遗传资源学报, 2017, 17(3):547-554. |
[22] |
Singh V K, Rajkumar M S, Garg R, et al. Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea[J]. Scientific Reports, 2017, 7(1):10895.
doi: 10.1038/s41598-017-11327-5 URL |
[23] |
Okushima Y, Overvoorde P J, Arima K, et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19[J]. The Plant Cell, 2005, 17(2):444-463.
doi: 10.1105/tpc.104.028316 URL |
[24] |
Pekker I, Alvarez J P, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity[J]. The Plant cell, 2005, 17(11):2899-2910.
doi: 10.1105/tpc.105.034876 URL |
[25] |
Park J E, Park J Y, Kim Y S, et al. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis[J]. Journal of Biological Chemistry, 2007, 282(13):10036-10046.
doi: 10.1074/jbc.M610524200 URL |
[26] |
Huang D Q, Wu W R, Abrams S R, et al. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors[J]. Journal of Experimental Botany, 2008, 59:2991-3007.
doi: 10.1093/jxb/ern155 URL |
[27] |
Chen L, Ren F, Zhong H, et al. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus[J]. Acta Biochimica et Biophysica Sinica, 2010, 42(2):154-164.
doi: 10.1093/abbs/gmp113 URL |
[28] |
Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray[J]. The Plant Journal, 2002, 31(3):279-292.
doi: 10.1046/j.1365-313X.2002.01359.x URL |
[1] | XIAO Yang, LI Qingrong, XING Dongxu, YANG Qiong. Effects of High Temperature Stress on Gene Expression of Chemosensory Protein in Midgut and Fat Body of Bombyx mori [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 107-115. |
[2] | XIAO Yang, LI Qingrong, XING Dongxu, YANG Qiong. Effects of High Temperature Stress on Antioxidant Enzyme Activity and Gene Expression in Larvae of Silkworm Varieties with Different Tolerance [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 111-118. |
[3] | YAO Qiong, QUAN Linfa, XU Shu, DONG Yizhi, LI Wenjing, CHI Yanyan, CHEN Bingxu. Identification and Characterization of Opsin Genes from Thalassodes immissaria and Gene Expression After White LED Treatment [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 103-109. |
[4] | FANG Xueliang, FU Ming, CHEN Zheng, BAI Yunxiu, HE Ying, ZENG Hanlai. 5-Azacytidine Regulating Plant Gene Expression: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 30-35. |
[5] | Jin Longfei, Yin Xinxing, Feng Meili, Zhou Lixia, Cao Hongxing. Cloning and Expression Analysis of EgNIP5;1 Gene in Oil Palm Under Boron Deficiency [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 22-27. |
[6] | Han Shuai, Wu Jie, Zhang Heqing, Liang Genyun, Xi Yadong. Pathogen Identification and Biological Characteristics of a New Anthracnose on Cucumber [J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 96-108. |
[7] | Li Guanrong, He Hao, Zhu Guoqing, Chen Shiya, Xu Yang, Jin Shumei. Salt-stress (NaHCO3) Revealed by RNA-seq: Effect on Gene Expression in Lilium pumilum Bulb [J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 64-71. |
[8] | An Wei, Xiao Yu, Gao Xiaohua, Peng Junhui, Tang Qian. Different Expression Levels of Virulence Genes of Bacterial Pathogen Associated with Acute Hepatopancreatic Necrosis Disease Under Different Environments [J]. Chinese Agricultural Science Bulletin, 2020, 36(36): 132-136. |
[9] | Shi Pibiao, Wang Jun, Fei Yueyue, Hong Lizhou, Wang Weiyi, Lv Yuanda, Gu Minfeng. Effects on Seedling Growth and CqNHX1 Gene Expression of Different Quinoa Varieties: Salt Stress [J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 19-24. |
[10] | Zhang Minying, Xu Dongpo, Zhou Yanfeng, Fang Di'an, Liu Kai, Pan Zeyu. Preliminary Analysis on Mitochondrial 16S rRNA Gene Sequence of Exopalaemon modestus and Phylogeny of Palaemoninae [J]. Chinese Agricultural Science Bulletin, 2020, 36(17): 157-164. |
[11] | Chen Li, Gu Hui, Jia Zhiwei, Hong Keqian. Dof Transcription Factor in Pineapple Fruits Treated with Hexaldehyde Delaying Internal Browning Resistance: Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2020, 36(15): 115-122. |
[12] | . The Progress of Plant Acyl-CoA-binding Proteins [J]. Chinese Agricultural Science Bulletin, 2019, 35(30): 78-83. |
[13] | . Effects of Low Temperature on Laccase Activity and Expression of Laccase Gene Families in Mycelium of Mongolian Mushroom (Tricholoma mongolicum) [J]. Chinese Agricultural Science Bulletin, 2019, 35(3): 40-46. |
[14] | 李登科 and . Advances in the Relative Genes of Plant Embryo Abortion [J]. Chinese Agricultural Science Bulletin, 2019, 35(27): 137-141. |
[15] | 张文彬 and . Effect of Nanomaterials on Plant Gene Expression and Genotoxicity [J]. Chinese Agricultural Science Bulletin, 2019, 35(12): 137-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||