
Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (19): 93-98.doi: 10.11924/j.issn.1000-6850.casb2021-0733
Previous Articles Next Articles
					
													MA Su1( ), CUI Guoyi2, ZHAO Yu1(
), CUI Guoyi2, ZHAO Yu1( ), ZHAO Ying1, LIU Xuezhen1, ZHANG Chengdong1
), ZHAO Ying1, LIU Xuezhen1, ZHANG Chengdong1
												  
						
						
						
					
				
Received:2021-07-28
															
							
																	Revised:2021-10-23
															
							
															
							
																	Online:2022-07-05
															
							
																	Published:2022-07-13
															
						Contact:
								ZHAO Yu   
																	E-mail:masu1999@163.com;zhaoyu737@163.com
																					CLC Number:
MA Su, CUI Guoyi, ZHAO Yu, ZHAO Ying, LIU Xuezhen, ZHANG Chengdong. Spatial-temporal Variation Characteristics of NPP and the Driving Factors: A Case Study of Yan’an[J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 93-98.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0733
| 判断依据 | 交互作用 | 
|---|---|
| P(X1∩X2)<min[P(X1),P(X2)] | 非线性减弱 | 
| min[P(X1),P(X2)]<P(X1∩X2)<max[P(X1),P(X2)] | 单因子非线性减弱 | 
| P(X1∩X2)>max[P(X1),P(X2)] | 双因子增强 | 
| P(X1∩X2)>P(X1)+P(X2) | 非线性增强 | 
| P(X1∩X2)=P(X1)+P(X2) | 独立 | 
| 判断依据 | 交互作用 | 
|---|---|
| P(X1∩X2)<min[P(X1),P(X2)] | 非线性减弱 | 
| min[P(X1),P(X2)]<P(X1∩X2)<max[P(X1),P(X2)] | 单因子非线性减弱 | 
| P(X1∩X2)>max[P(X1),P(X2)] | 双因子增强 | 
| P(X1∩X2)>P(X1)+P(X2) | 非线性增强 | 
| P(X1∩X2)=P(X1)+P(X2) | 独立 | 
| 交互因子 | 交互作用结果 | 交互因子 | 交互作用结果 | 
|---|---|---|---|
| DEM∩降水(0.71) | 双因子增强 | 气温∩底土有机碳(0.12) | 非线性增强 | 
| DEM∩气温(0.13) | 双因子增强 | 气温∩表层有机碳(0.10) | 非线性增强 | 
| DEM∩植被类型(0.51) | 非线性增强 | 气温∩有效贮水量(0.09) | 非线性增强 | 
| DEM∩土壤质地(0.09) | 非线性增强 | 植被类型∩土壤质地(0.44) | 非线性增强 | 
| DEM∩pH(0.12) | 非线性增强 | 植被类型∩pH(0.46) | 非线性增强 | 
| DEM∩底土有机碳(0.13) | 非线性增强 | 植被类型∩底土有机碳(0.46) | 非线性增强 | 
| DEM∩表层有机碳(0.12) | 非线性增强 | 植被类型∩表层有机碳(0.46) | 非线性增强 | 
| DEM∩有效贮水量(0.08) | 非线性增强 | 植被类型∩有效贮水量(0.43) | 非线性增强 | 
| 降水∩气温(0.72) | 双因子增强 | 土壤质地∩pH (0.01) | 独立 | 
| 降水∩植被类型(0.75) | 双因子增强 | 土壤质地∩底土有机碳(0.01) | 双因子增强 | 
| 降水∩土壤质地(0.70) | 双因子增强 | 土壤质地∩表层有机碳(0.01) | 双因子增强 | 
| 降水∩pH(0.70) | 双因子增强 | 土壤质地∩有效贮水量(0.01) | 双因子增强 | 
| 降水∩底土有机碳(0.70) | 非线性增强 | pH∩底土有机碳(0) | 双因子增强 | 
| 降水∩表层有机碳(0.70) | 双因子增强 | pH∩表层有机碳(0.01) | 双因子增强 | 
| 降水∩有效贮水量(0.70) | 双因子增强 | pH∩有效贮水量(0.01) | 双因子增强 | 
| 气温∩植被类型(0.50) | 双因子增强 | 底土有机碳∩表层有机碳(0) | 双因子增强 | 
| 气温∩土壤质地(0.09) | 双因子增强 | 底土有机碳∩有效贮水量(0) | 双因子增强 | 
| 气温∩pH(0.10) | 非线性增强 | 表层有机碳∩有效贮水量(0.01) | 双因子增强 | 
| 交互因子 | 交互作用结果 | 交互因子 | 交互作用结果 | 
|---|---|---|---|
| DEM∩降水(0.71) | 双因子增强 | 气温∩底土有机碳(0.12) | 非线性增强 | 
| DEM∩气温(0.13) | 双因子增强 | 气温∩表层有机碳(0.10) | 非线性增强 | 
| DEM∩植被类型(0.51) | 非线性增强 | 气温∩有效贮水量(0.09) | 非线性增强 | 
| DEM∩土壤质地(0.09) | 非线性增强 | 植被类型∩土壤质地(0.44) | 非线性增强 | 
| DEM∩pH(0.12) | 非线性增强 | 植被类型∩pH(0.46) | 非线性增强 | 
| DEM∩底土有机碳(0.13) | 非线性增强 | 植被类型∩底土有机碳(0.46) | 非线性增强 | 
| DEM∩表层有机碳(0.12) | 非线性增强 | 植被类型∩表层有机碳(0.46) | 非线性增强 | 
| DEM∩有效贮水量(0.08) | 非线性增强 | 植被类型∩有效贮水量(0.43) | 非线性增强 | 
| 降水∩气温(0.72) | 双因子增强 | 土壤质地∩pH (0.01) | 独立 | 
| 降水∩植被类型(0.75) | 双因子增强 | 土壤质地∩底土有机碳(0.01) | 双因子增强 | 
| 降水∩土壤质地(0.70) | 双因子增强 | 土壤质地∩表层有机碳(0.01) | 双因子增强 | 
| 降水∩pH(0.70) | 双因子增强 | 土壤质地∩有效贮水量(0.01) | 双因子增强 | 
| 降水∩底土有机碳(0.70) | 非线性增强 | pH∩底土有机碳(0) | 双因子增强 | 
| 降水∩表层有机碳(0.70) | 双因子增强 | pH∩表层有机碳(0.01) | 双因子增强 | 
| 降水∩有效贮水量(0.70) | 双因子增强 | pH∩有效贮水量(0.01) | 双因子增强 | 
| 气温∩植被类型(0.50) | 双因子增强 | 底土有机碳∩表层有机碳(0) | 双因子增强 | 
| 气温∩土壤质地(0.09) | 双因子增强 | 底土有机碳∩有效贮水量(0) | 双因子增强 | 
| 气温∩pH(0.10) | 非线性增强 | 表层有机碳∩有效贮水量(0.01) | 双因子增强 | 
| [1] | 赵俊红, 周华荣, 卢雅焱, 等. 2000—2015年塔里木胡杨林国家级自然保护区NPP时空动态特征及其影响因素[J]. 干旱区地理, 2020, 43(1):190-200. | 
| [2] | 王宗明, 国志兴, 宋开山, 等. 2000—2005年三江平原土地利用/覆被变化对植被净初级生产力的影响研究[J]. 自然资源学报, 2009, 24(1):136-146. | 
| [3] | 潘洪义, 黄佩, 徐婕. 基于地理探测器的岷江中下游地区植被NPP时空格局演变及其驱动力研究[J]. 生态学报, 2019, 39(20):7621-7631. | 
| [4] | 冷疏影, 宋长青, 吕克解, 等. 区域环境变化研究的重要科学问题——国家自然科学基金“21世纪核心科学问题”论坛[J]. 自然科学进展, 2001(2):112-114. | 
| [5] | LI Y, JI J. Model estimates of global carbon flux between vegetation and the atmosphere[J]. Advances in atmospheric sciences, 2001, 18(5):807-818. doi: 10.1007/BF03403504 URL | 
| [6] | AZHDARI Z, RAFEIE Sardooi E, BAZRAFSHAN O, et al. Impact of climate change on net primary production (NPP) in south Iran[J]. Environmental monitoring and assessment, 2020, 192(6):409. doi: 10.1007/s10661-020-08389-w URL | 
| [7] | YUAN Q, WU S, DAI E, et al. NPP vulnerability of the potential vegetation of China to climate change in the past and future[J]. Journal of geographical sciences, 2017, 27(2):131-142. doi: 10.1007/s11442-017-1368-6 URL | 
| [8] | MOTEW M M, KUCHARIK C J. Climate-induced changes in biome distribution, NPP, and hydrology in the Upper Midwest U.S.: A case study for potential vegetation[J]. Journal of geophysical research: biogeosciences, 2013, 118(1):248-264. doi: 10.1002/jgrg.20025 URL | 
| [9] | ZHANG Y, GURUNG R, MARX E, et al. DayCent model predictions of NPP and grain yields for agricultural lands in the Contiguous U.S.[J]. Journal of geophysical research: Biogeosciences, 2020, 125(7):e2020J-e5750J. | 
| [10] | 李登科, 范建忠, 董金芳. 1981—2000年陕西省植被净初级生产力时空变化[J]. 西北植物学报, 2011, 31(9):1873-1877. | 
| [11] | HADIAN F, JAFARI R, BASHARI H, et al. Estimation of spatial and temporal changes in net primary production based on Carnegie Ames Stanford Approach (CASA) model in semi-arid rangelands of Semirom County, Iran[J]. Journal of arid land, 2019, 11(4). | 
| [12] | 张雪蕾, 肖伟华, 王义成. 基于改进的CASA模型三峡库区NPP时空特征及气候驱动机制[J]. 生态学报, 2021, 41(9):3488-3498. | 
| [13] | 刘丽慧, 孙皓, 李传华. 基于改进土壤冻融水循环的Biome-BGC模型估算青藏高原草地NPP[J]. 地理研究, 2021, 40(5):1253-1264. doi: 10.11821/dlyj020200826 | 
| [14] | 杨瑞芳, 尹思阳. 全球热带森林分布区NPP变化及其气候响应分析[J]. 测绘通报, 2021(5):49-53. | 
| [15] | 滑永春, 马秀枝, 萨如拉. 内蒙古地区草地NPP时空变化及预测[J]. 福建农林大学学报:自然科学版, 2021, 50(4):553-561. | 
| [16] | 谷雷, 岳彩荣, 张国飞, 等. 基于Google Earth Engine平台的大湄公河次区域2001—2019年植被NPP时空变化分析[J]. 西部林业科学, 2021, 50(2):132-139. | 
| [17] | 左丽媛, 高江波. 基于地理探测器的喀斯特植被NPP定量归因[J]. 生态环境学报, 2020, 29(4):686-694. | 
| [18] | 王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及自然驱动因子分析[J]. 生态环境学报, 2021, 30(6):1158-1167. | 
| [19] | 李金珂, 杨玉婷, 张会茹, 等. 秦巴山区近15年植被NPP时空演变特征及自然与人为因子解析[J]. 生态学报, 2019, 39(22):8504-8515. | 
| [20] | 孟现勇, 王浩. 基于世界土壤数据库(HWSD)土壤数据集(v1.2)[Z]. 国家青藏高原科学数据中心, 2018. | 
| [21] | 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134. doi: 10.11821/dlxb201701010 | 
| [22] | XING D F, XU C D, LIAO X Y, et al. Spatial association between outdoor air pollution and lung cancer incidence in China[J]. BMC public health, 2019, 19(1):1377. doi: 10.1186/s12889-019-7740-y URL | 
| [23] | WANG Y, LIU G, ZHAO Z, et al. Assessment of coastal soil fertility based on environmental impact: a case study in the Yellow River Delta, China[J]. Journal of coastal conservation, 2021, 25(3):35. doi: 10.1007/s11852-021-00823-6 URL | 
| [24] | YUAN X, SHAO Y, WEI X, et al. Study on the potential of cultivated land quality improvement based on a geological detector[J]. Geological journal, 2018, 53(S1):387-397. doi: 10.1002/gj.3160 URL | 
| [25] | ZHU L, MENG J, ZHU L. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin[J]. Ecological indicators, 2020, 117:106545. doi: 10.1016/j.ecolind.2020.106545 URL | 
| [26] | WANG H, LIU L, YIN L, et al. Exploring the complex relationships and drivers of ecosystem services across different geomorphological types in the Beijing-Tianjin-Hebei region, China (2000-2018)[J]. Ecological indicators, 2021, 121:107116. doi: 10.1016/j.ecolind.2020.107116 URL | 
| [27] | GUO B, ZANG W, LUO W. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global change and anthropogenic interference[J]. Science of the total environment, 2020, 741:140256. doi: 10.1016/j.scitotenv.2020.140256 URL | 
| [28] | 王耀斌, 赵永华, 韩磊, 等. 2000—2015年秦巴山区植被净初级生产力时空变化及其趋动因子[J]. 应用生态学报, 2018, 29(7):2373-2381. | 
| [29] | 朱会利, 杨改河, 韩磊. 延安市退耕过程植被覆盖度变化及其影响因子分析[J]. 农业机械学报, 2015, 46(8):272-280. | 
| [30] | 李婷婷, 马超, 郭增长. 2004-2015年贺兰山自然保护区植被NPP时空变化与气候响应[J]. 水土保持研究, 2020, 27(6):254-261. | 
| [31] | 姜萍, 丁文广, 肖静, 等. 新疆植被NPP及其对气候变化响应的海拔分异[J]. 干旱区地理, 2021, 44(3):849-857. | 
| [32] | 赵芳, 张久阳, 刘思远, 等. 秦巴山地NPP及对气候变化响应的多维地带性与暖温带-亚热带界线[J]. 生态学报, 2021, 41(1):57-68. | 
| [1] | WANG Jing, FANG Feng, WANG Ying. Temporal Characteristics and Driving Factors of Sown Area Variation for Main Economic Crops in Southern China [J]. Chinese Agricultural Science Bulletin, 2022, 38(1): 114-124. | 
| [2] | Wu Wenyan, Cheng Zhichao, Li Mengsha, Sui Xin, Zeng Xiannan. Development of Rhizobium Based on Web of Science [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 109-117. | 
| [3] | Ren Yukun. Spatial Variability Characteristics of Forest Soil Factors in Shanxi Province [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 42-50. | 
| [4] | Wang Xie, Yang Qiao, Zeng Qiguo, Zhang Jianhua, Li Jingrui, Li Yiran, Zhu Yuhong. Spatial-temporal Pattern Evolution of Cultivated Land in Sichuan Province from 1999 to 2018 [J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 110-116. | 
| [5] | Liang Shijie, Li Liangtao, Zhang Xiaohua, Wang Yao, Zhou Yuekang, Ma Chuanyu. Dynamic Analysis of Landscape Pattern at Village Level in Qingyazhai Reserve: Participatory Interview Based on the 3D e-Sandbox [J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 151-159. | 
| [6] | He Peng, Xu Lishuai, Bi Rutian, Zhao Qingkang. Spatial and Temporal Characteristics of Spring Droughts in Shanxi [J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 126-131. | 
| [7] | . Summer Precipitation in Huainan from 1957 to 2017: Variation Characteristics [J]. Chinese Agricultural Science Bulletin, 2019, 35(7): 105-109. | 
| [8] | . Phenology of Woody Plants in Desert Oasis: Taking Woody Plants in Qiemo as an Example [J]. Chinese Agricultural Science Bulletin, 2019, 35(2): 86-92. | 
| [9] | 罗格平 and 殷刚. Net Primary Productivity of Farmland Ecosystem in Xinjiang: The Spatio-temporal Dynamics and Its Response to Climate Change Based on Agro-IBIS Model [J]. Chinese Agricultural Science Bulletin, 2018, 34(34): 91-98. | 
| [10] | . The Spatial-temporal Variation of Net Primary Productivity and Ecosystem Service Value of Cultivated Land: A Case Study of Baiyin District in Gansu Province [J]. Chinese Agricultural Science Bulletin, 2016, 32(35): 65-70. | 
| [11] | 杨 雪,杨 东,安丽娜,薛双奕 and 马荣良. Variation Characteristics of Temperature and Precipitation in Jilin: From 1961 to 2013 [J]. Chinese Agricultural Science Bulletin, 2016, 32(29): 139-146. | 
| [12] | Zhao Dandan and Hu Yecui. Spatial-temporal Characteristics of Intensive Land Use in the Yangtze River Delta Region [J]. Chinese Agricultural Science Bulletin, 2016, 32(20): 77-84. | 
| [13] | . Spatial-temporal Variation of Heat Resources at Temperature Above 10℃ in Qinling Mountains Under Global Climate Warming [J]. Chinese Agricultural Science Bulletin, 2016, 32(2): 155-162. | 
| [14] | Wang Juan,Dong Jinfang and He Huijuan. Temporal and Spatial Variation of Vegetation Net Primary Productivity and Its Driving Factors in Reforestation Zone of Northern Shaanxi [J]. Chinese Agricultural Science Bulletin, 2016, 32(18): 114-120. | 
| [15] | Guo Zhenglei,Zhang Shaokai,Li Ling,Yang Suqin,Du Liwei,Zhang Ning and Dong Jing. Spatial-temporal Variation of Mass Fraction of Soil Effective Zinc in Henan Province [J]. Chinese Agricultural Science Bulletin, 2015, 31(32): 137-141. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||