
Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (20): 73-80.doi: 10.11924/j.issn.1000-6850.casb2021-0809
Previous Articles Next Articles
					
													ZHANG Heqing1( ), WU Jie1, HAN Shuai1, XI Yadong1(
), WU Jie1, HAN Shuai1, XI Yadong1( ), LI Yuejian2, LIANG Genyun2
), LI Yuejian2, LIANG Genyun2
												  
						
						
						
					
				
Received:2021-08-20
															
							
																	Revised:2021-11-04
															
							
															
							
																	Online:2022-07-15
															
							
																	Published:2022-08-23
															
						Contact:
								XI Yadong   
																	E-mail:759214612@qq.com;xiyadong2002@126.com
																					CLC Number:
ZHANG Heqing, WU Jie, HAN Shuai, XI Yadong, LI Yuejian, LIANG Genyun. Effects of Four Annual Rotation Patterns on Soil Microbial Community[J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 73-80.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0809
| 群落 | 轮作模式 | OTU数 | ACE指数 | Shannon指数 | 
|---|---|---|---|---|
| 土壤真菌群落 | JJ | 171.00±37.55a | 182.92±37.36a | 3.30±0.23a | 
| LD | 192.25±9.20a | 200.11±7.09a | 3.72±0.12ab | |
| LZ | 226.50±21.27a | 231.30±21.86a | 3.23±0.17a | |
| SH | 246.75±30.13a | 265.26±25.85a | 3.92±0.08b | |
| 土壤细菌群落 | JJ | 891.50±154.48ab | 915.18±164.09ab | 5.33±0.15a | 
| LD | 825.00±53.66a | 849.55±58.00a | 5.01±0.13a | |
| LZ | 991.75±46.32ab | 1030.53±54.98ab | 5.23±0.10a | |
| SH | 1147.00±15.25b | 1176.49±11.94b | 5.89±0.11b | 
| 群落 | 轮作模式 | OTU数 | ACE指数 | Shannon指数 | 
|---|---|---|---|---|
| 土壤真菌群落 | JJ | 171.00±37.55a | 182.92±37.36a | 3.30±0.23a | 
| LD | 192.25±9.20a | 200.11±7.09a | 3.72±0.12ab | |
| LZ | 226.50±21.27a | 231.30±21.86a | 3.23±0.17a | |
| SH | 246.75±30.13a | 265.26±25.85a | 3.92±0.08b | |
| 土壤细菌群落 | JJ | 891.50±154.48ab | 915.18±164.09ab | 5.33±0.15a | 
| LD | 825.00±53.66a | 849.55±58.00a | 5.01±0.13a | |
| LZ | 991.75±46.32ab | 1030.53±54.98ab | 5.23±0.10a | |
| SH | 1147.00±15.25b | 1176.49±11.94b | 5.89±0.11b | 
| 轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
| LD | Trichoderma | 3 | 7.64 | 2.82 | 3.35 | SH | Acrostalagmus | 0 | 0.01 | 0 | 0.16 | 
| Talaromyces | 0.15 | 0.5 | 0.05 | 0.05 | Dactylella | 0 | 0 | 0.01 | 0.25 | ||
| Symmetrospora | 0 | 0.15 | 0.01 | 0.03 | Ilyonectria | 0 | 0.03 | 0.14 | 0.45 | ||
| Spencerozyma | 0 | 0.18 | 0 | 0 | Oidiodendron | 0.08 | 0.28 | 0.11 | 1.1 | ||
| LZ | Ramicandelaber | 0 | 0 | 0.16 | 0.03 | Simplicillium | 0 | 0 | 0.01 | 0.23 | |
| Pyrenochaetopsis | 0.01 | 0 | 1.39 | 0.37 | Ustilaginoidea | 0 | 0 | 0.23 | 1.1 | ||
| Nigrospora | 0 | 0 | 3.94 | 0.62 | Rhizophagus | 0.01 | 0.01 | 0 | 0.07 | ||
| Conlarium | 0.05 | 0.04 | 0.18 | 0.06 | |||||||
| 轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
| LD | Trichoderma | 3 | 7.64 | 2.82 | 3.35 | SH | Acrostalagmus | 0 | 0.01 | 0 | 0.16 | 
| Talaromyces | 0.15 | 0.5 | 0.05 | 0.05 | Dactylella | 0 | 0 | 0.01 | 0.25 | ||
| Symmetrospora | 0 | 0.15 | 0.01 | 0.03 | Ilyonectria | 0 | 0.03 | 0.14 | 0.45 | ||
| Spencerozyma | 0 | 0.18 | 0 | 0 | Oidiodendron | 0.08 | 0.28 | 0.11 | 1.1 | ||
| LZ | Ramicandelaber | 0 | 0 | 0.16 | 0.03 | Simplicillium | 0 | 0 | 0.01 | 0.23 | |
| Pyrenochaetopsis | 0.01 | 0 | 1.39 | 0.37 | Ustilaginoidea | 0 | 0 | 0.23 | 1.1 | ||
| Nigrospora | 0 | 0 | 3.94 | 0.62 | Rhizophagus | 0.01 | 0.01 | 0 | 0.07 | ||
| Conlarium | 0.05 | 0.04 | 0.18 | 0.06 | |||||||
| 轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
| SH | p_Acidobacteria | 0.252 | 0.058 | 0.360 | 1.680 | SH | Reyranella | 0.109 | 0.060 | 0.235 | 0.613 | 
| f_Acidobacteriaceae | 0.020 | 0.019 | 0.109 | 0.737 | Phenylobacterium | 0.175 | 0.072 | 0.185 | 0.405 | ||
| f_Blastocatellaceae | 0.011 | 0.004 | 0.010 | 0.289 | Steroidobacter | 0.015 | 0.000 | 0.045 | 0.227 | ||
| Blastocatellaceae_RB41 | 0.035 | 0.000 | 0.016 | 0.219 | Altererythrobacter | 0.083 | 0.064 | 0.061 | 0.190 | ||
| p_Acidobacteria_o_Subgroup_7 | 0.009 | 0.000 | 0.010 | 0.173 | Polycyclovorans | 0.011 | 0.000 | 0.016 | 0.186 | ||
| p_Acidobacteria_c_Subgroup_6 | 0.014 | 0.002 | 0.029 | 0.144 | f_Comamonadaceae | 0.005 | 0.011 | 0.008 | 0.174 | ||
| Phycicoccus | 0.060 | 0.028 | 0.020 | 0.249 | f_BIrii41 | 0.035 | 0.013 | 0.033 | 0.173 | ||
| Iamia | 0.006 | 0.000 | 0.015 | 0.134 | Dokdonella | 0.017 | 0.010 | 0.016 | 0.172 | ||
| Patulibacter | 0.008 | 0.000 | 0.019 | 0.116 | Nitrosospira | 0.038 | 0.014 | 0.026 | 0.115 | ||
| Gaiella | 0.018 | 0.024 | 0.011 | 0.103 | o_Chthoniobacterales | 0.022 | 0.000 | 0.030 | 0.180 | ||
| Chitinophaga | 0.034 | 0.014 | 0.049 | 0.444 | LD | Mizugakiibacter | 8.547 | 12.341 | 5.829 | 3.952 | |
| Niastella | 0.002 | 0.000 | 0.027 | 0.192 | p_Saccharibacteria | 2.129 | 4.213 | 1.068 | 1.912 | ||
| Flavisolibacter | 0.018 | 0.011 | 0.019 | 0.108 | f_ODP1230B8.23 | 0.919 | 3.105 | 1.084 | 0.450 | ||
| p_Chloroflexi_c_KD4-96 | 0.451 | 0.253 | 0.661 | 0.999 | f_Acetobacteraceae | 1.073 | 1.599 | 1.093 | 0.784 | ||
| f_Anaerolineaceae | 0.018 | 0.005 | 0.021 | 0.364 | f_Rhodospirillaceae | 0.899 | 1.355 | 0.689 | 0.845 | ||
| Nitrolancea | 0.164 | 0.179 | 0.177 | 0.321 | Alkanibacter | 0.162 | 0.260 | 0.077 | 0.016 | ||
| Chloroflexi | 0.026 | 0.021 | 0.020 | 0.116 | Bdellovibrio | 0.143 | 0.223 | 0.059 | 0.090 | ||
| Gemmatimonas | 0.789 | 0.319 | 0.750 | 1.656 | LZ | p_Acidobacteria | 1.081 | 1.569 | 6.140 | 0.402 | |
| Gemmatirosa | 0.106 | 0.066 | 0.041 | 0.323 | Acidibacter | 1.781 | 1.975 | 3.208 | 1.923 | ||
| p_Latescibacteria | 0.026 | 0.000 | 0.034 | 0.397 | Aquicella | 0.545 | 0.800 | 1.505 | 0.549 | ||
| Nitrospira | 0.222 | 0.183 | 0.519 | 1.013 | Bradyrhizobium | 0.463 | 0.404 | 1.070 | 0.737 | ||
| o_Nitrospirales_f_0319-6A21 | 0.022 | 0.000 | 0.022 | 0.185 | Granulicella | 0.266 | 0.398 | 0.846 | 0.404 | ||
| Sphingomonas | 1.255 | 1.107 | 1.645 | 3.771 | Methylovirgula | 0.045 | 0.084 | 0.180 | 0.057 | ||
| f_Nitrosomonadaceae | 0.217 | 0.074 | 0.415 | 2.433 | Roseiarcus | 0.018 | 0.021 | 0.142 | 0.079 | ||
| Pseudolabrys | 0.692 | 0.439 | 1.039 | 1.503 | JJ | Methylobacterium | 0.127 | 0.030 | 0.011 | 0.006 | |
| Haliangium | 0.308 | 0.209 | 0.392 | 1.094 | |||||||
| 轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
| SH | p_Acidobacteria | 0.252 | 0.058 | 0.360 | 1.680 | SH | Reyranella | 0.109 | 0.060 | 0.235 | 0.613 | 
| f_Acidobacteriaceae | 0.020 | 0.019 | 0.109 | 0.737 | Phenylobacterium | 0.175 | 0.072 | 0.185 | 0.405 | ||
| f_Blastocatellaceae | 0.011 | 0.004 | 0.010 | 0.289 | Steroidobacter | 0.015 | 0.000 | 0.045 | 0.227 | ||
| Blastocatellaceae_RB41 | 0.035 | 0.000 | 0.016 | 0.219 | Altererythrobacter | 0.083 | 0.064 | 0.061 | 0.190 | ||
| p_Acidobacteria_o_Subgroup_7 | 0.009 | 0.000 | 0.010 | 0.173 | Polycyclovorans | 0.011 | 0.000 | 0.016 | 0.186 | ||
| p_Acidobacteria_c_Subgroup_6 | 0.014 | 0.002 | 0.029 | 0.144 | f_Comamonadaceae | 0.005 | 0.011 | 0.008 | 0.174 | ||
| Phycicoccus | 0.060 | 0.028 | 0.020 | 0.249 | f_BIrii41 | 0.035 | 0.013 | 0.033 | 0.173 | ||
| Iamia | 0.006 | 0.000 | 0.015 | 0.134 | Dokdonella | 0.017 | 0.010 | 0.016 | 0.172 | ||
| Patulibacter | 0.008 | 0.000 | 0.019 | 0.116 | Nitrosospira | 0.038 | 0.014 | 0.026 | 0.115 | ||
| Gaiella | 0.018 | 0.024 | 0.011 | 0.103 | o_Chthoniobacterales | 0.022 | 0.000 | 0.030 | 0.180 | ||
| Chitinophaga | 0.034 | 0.014 | 0.049 | 0.444 | LD | Mizugakiibacter | 8.547 | 12.341 | 5.829 | 3.952 | |
| Niastella | 0.002 | 0.000 | 0.027 | 0.192 | p_Saccharibacteria | 2.129 | 4.213 | 1.068 | 1.912 | ||
| Flavisolibacter | 0.018 | 0.011 | 0.019 | 0.108 | f_ODP1230B8.23 | 0.919 | 3.105 | 1.084 | 0.450 | ||
| p_Chloroflexi_c_KD4-96 | 0.451 | 0.253 | 0.661 | 0.999 | f_Acetobacteraceae | 1.073 | 1.599 | 1.093 | 0.784 | ||
| f_Anaerolineaceae | 0.018 | 0.005 | 0.021 | 0.364 | f_Rhodospirillaceae | 0.899 | 1.355 | 0.689 | 0.845 | ||
| Nitrolancea | 0.164 | 0.179 | 0.177 | 0.321 | Alkanibacter | 0.162 | 0.260 | 0.077 | 0.016 | ||
| Chloroflexi | 0.026 | 0.021 | 0.020 | 0.116 | Bdellovibrio | 0.143 | 0.223 | 0.059 | 0.090 | ||
| Gemmatimonas | 0.789 | 0.319 | 0.750 | 1.656 | LZ | p_Acidobacteria | 1.081 | 1.569 | 6.140 | 0.402 | |
| Gemmatirosa | 0.106 | 0.066 | 0.041 | 0.323 | Acidibacter | 1.781 | 1.975 | 3.208 | 1.923 | ||
| p_Latescibacteria | 0.026 | 0.000 | 0.034 | 0.397 | Aquicella | 0.545 | 0.800 | 1.505 | 0.549 | ||
| Nitrospira | 0.222 | 0.183 | 0.519 | 1.013 | Bradyrhizobium | 0.463 | 0.404 | 1.070 | 0.737 | ||
| o_Nitrospirales_f_0319-6A21 | 0.022 | 0.000 | 0.022 | 0.185 | Granulicella | 0.266 | 0.398 | 0.846 | 0.404 | ||
| Sphingomonas | 1.255 | 1.107 | 1.645 | 3.771 | Methylovirgula | 0.045 | 0.084 | 0.180 | 0.057 | ||
| f_Nitrosomonadaceae | 0.217 | 0.074 | 0.415 | 2.433 | Roseiarcus | 0.018 | 0.021 | 0.142 | 0.079 | ||
| Pseudolabrys | 0.692 | 0.439 | 1.039 | 1.503 | JJ | Methylobacterium | 0.127 | 0.030 | 0.011 | 0.006 | |
| Haliangium | 0.308 | 0.209 | 0.392 | 1.094 | |||||||
| [1] | BERENDSEN R L, PIETERSE C M J, Bakker P A. The rhizosphere microbiome and plant health[J]. Trends in plant science, 2012, 17(8):478-486. doi: 10.1016/j.tplants.2012.04.001 URL | 
| [2] | SCHLATTER D, KINKEL L, THOMASHOW L, et al. Disease suppressive soils: new insights from the soil microbiome[J]. Phytopathology, 2017, 107(11):1284-1297. doi: 10.1094/PHYTO-03-17-0111-RVW URL | 
| [3] | 王孝林, 王二涛. 根际微生物促进水稻氮利用[J]. 植物学报, 2019, 54(3):285-287. doi: 10.11983/CBB19060 | 
| [4] | 薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报, 2019, 33(6):10-20. | 
| [5] | NUMAN M, BASHIR S, KHAN Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review[J]. Microbiological research, 2018, 209:21-32. doi: 10.1016/j.micres.2018.02.003 URL | 
| [6] | BHARTI N, BARNAWAL D. Amelioration of salinity stress by PGPR:ACC deaminase and ROS scavenging enzymes activity. In: PGPR Amelioration in Sustainable Agriculture[M]. Woodhead publishing, 2019:85-106. | 
| [7] | 黄化刚, 吕立新, 张艳茗, 等. 微生物帮助烟草抗旱的机理及其应用[J]. 应用生态学报, 2017, 28(9):3099-3110. doi: 10.13287/j.1001-9332.201709.013 | 
| [8] | MENDES R, RAAIJMAKERS J M. Cross-kingdom similarities in microbiome functions[J]. The ISME journal, 2015, 9(9):1905-1907. doi: 10.1038/ismej.2015.7 URL | 
| [9] | PUTTEN W H, BRADFORD M A, BRINKMAN E P, et al. Where, when and how plant-soil feedback matters in a changing world[J]. Functional ecology, 2016, 30(7):1109-1121. doi: 10.1111/1365-2435.12657 URL | 
| [10] | HAAS D, DéFago G. Biological control of soil-borne pathogens by fluorescent pseudomonads[J]. Nature reviews microbiology, 2005, 3(4):307-319. doi: 10.1038/nrmicro1129 URL | 
| [11] | MAKATE C, WANG R, MAKATE M, et al. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change[J]. SpringerPlus, 2016, 5(1):1135. doi: 10.1186/s40064-016-2802-4 URL | 
| [12] | ZHANG L C, HUANG W, XIAO W, et al. Comparison of Soil Enzyme Activity and Microbial Community Structure between Rapeseed-Rice and Rice-Rice Plantings[J]. International journal of agriculture and bioligy, 2018, 20(8):1801-1808. | 
| [13] | HOU P F, CHIEN C H, CHIANG-HSIEH Y F, et al. Paddy-upland rotation for sustainable agriculture with regards to diverse soil microbial community[J]. Scientific reports, 2018, 8(1):1-9. | 
| [14] | STEINAUER K, CHATZINOTAS A, EISENHAUER N. Root exudate cocktails: the link between plant diversity and soil microorganisms?[J]. Ecology and Evolution, 2016, 6(20):7387-7396. doi: 10.1002/ece3.2454 URL | 
| [15] | GRUNERT O, ROBLES-AGUILAR A A, HERNANDEZ-SANABRIA E, et al. Tomato plants rather than fertilizers drive microbial community structure in horticultural growing media[J]. Scientific reports, 2019, 9(1):1-15. doi: 10.1038/s41598-018-37186-2 URL | 
| [16] | ZHOU X G, ZHANG J, PAN D, et al. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions[J]. Biology and fertility of soils, 2018, 54:363-372. doi: 10.1007/s00374-018-1265-x URL | 
| [17] | ZHOU X G, WU F. Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities[J]. Scientific reports, 2018, 8:4929. doi: 10.1038/s41598-018-23406-2 URL | 
| [18] | AIL-ALI A, DERAVEL J, KRIER F,et al. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42[J]. Environmental science and pollution research, 2018,25, 30:29910-29920. | 
| [19] | ALAM K M, ZHANG T, YAN Y L, et al. Transcriptional Analysis of Pseudomonas stutzeri A1501 Associated with Host Rice[J]. Advances in microbiology, 2016, 6(3):210-221. doi: 10.4236/aim.2016.63021 URL | 
| [20] | SUGIYAMA A, YAZAKI K. Root exudates of legume plants and their involvement in interactions with soil microbes. Secretions and exudates in biological systems[M]. Springer, Berlin,Heidelberg, 2012:27-48. | 
| [21] | DACHEV M, BíNa D, SOBOTKA R, et al. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica[J]. PLoS biology, 2017, 15(12):e2003943. doi: 10.1371/journal.pbio.2003943 URL | 
| [22] | DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509. doi: 10.1038/nature16461 URL | 
| [23] | TANGAROMSUK J, POKETHITIYOOK P, KRUATRACHUE M, et al. Cadmium biosorption by Sphingomonas paucimobilis biomass[J]. Bioresource Technology, 2002, 85(1):103-105. doi: 10.1016/S0960-8524(02)00066-4 URL | 
| [24] | LIU S W, XU M, TUO L, et al. Phycicoccus endophyticus sp. nov., an endophytic actinobacterium isolated from Bruguiera gymnorhiza[J]. International journal of systematic and evolutionary microbiology, 2016, 66(3):1105-1111. doi: 10.1099/ijsem.0.000842 URL | 
| [25] | JIN D C, KONG X, LI H H, et al. Patulibacter brassicae sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris)[J]. International journal of systematic and evolutionary microbiology, 2016, 66(12):5056-5060. doi: 10.1099/ijsem.0.001469 URL | 
| [26] | 何英, 张屹, 朱菲莹, 等. 西瓜枯萎病不同发病阶段根际微生物群落结构分析[J]. 湖南农业科学, 2019(9):47-50. | 
| [27] | HUYNH T T T. Biocontrol potential of Bradyrhizobium japonicum against soybean sudden death syndrome[D]. Iowa State: Iowa State university department of plant pathology and microbiology, 2019:11-50. | 
| [28] | OSHKIN I Y, KULICHEVSKAYA I S, RIJPSTRA W I C, et al. Granulicella sibirica sp. nov., a psychrotolerant acidobacterium isolated from an organic soil layer in forested tundra, West Siberia[J]. International journal of systematic and evolutionary microbiology, 2019, 69(4):1195-1201. doi: 10.1099/ijsem.0.003290 URL | 
| [29] | GROSSI C E M, FANTINO E, SERRAL F, et al. Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions[J]. Frontiers in plant science, 2020, 11:1-15. doi: 10.3389/fpls.2020.00001 URL | 
| [30] | 尹彦舒, 崔曼, 崔伟国, 等. 大蒜连作障碍形成机理的研究进展[J]. 生物资源, 2018, 40(2):141-147. | 
| [1] | CHEN Dao, WANG Xin, JIANG Shan, ZHANG Jie, WU Zujian, DING Xinlun. Strawberry Mottle Virus Isolated in Fujian: Complete Genome Sequence and Molecular Variation [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 94-101. | 
| [2] | WANG Yan, WANG Liwei, ZHAO Hongyan, ZHAO Min, YANG Hongyan. Characteristics of Nutrients and Microbial Community Composition of Different Panax ginseng Cultivation Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 60-68. | 
| [3] | HAN Yajing, WANG Xinyu, LI Jiayue, HUANG Qunyi, WANG Hanting, YE Lefu, FU Xue. Effects of Two Types of Foliar Fertilizers on Cucumber-Thrips [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 113-119. | 
| [4] | XU Xiaomei, LI Ying, HENG Zhou, XU Xiaowan, LI Tao, WANG Hengming. CaWRKY Transcription Factors Induced by Phytophthora capsici: Screening and Signal Pathway Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 22-31. | 
| [5] | LI Zhou, YANG Yayun, DAI Luyuan, ZHANG Feifei, A Xinxiang, DONG Chao, WANG Bin, TANG Cuifeng. Rice Bacterial Blight Resistance Genes and Resistance-related Factors: A Review on Research and Utilization [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 91-99. | 
| [6] | CHEN Qingqing, WANG Chunlin, ZHANG Haishan, ZHANG Aifang. Rice Blast and Bacterial Blight of Regional Trial Rice Varieties in Anhui Province: Resistance Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 134-139. | 
| [7] | CHEN Liuhong, ZHAO Chunlei, WANG Xi, LI Yanli, DING Guangzhou, CHEN Li. Single-cell Transcriptome Sequencing Technology and Its Application in Plant Research [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 87-93. | 
| [8] | LV Wei, LI Shengnan, FENG Guojun, YANG Xiaoxu, LIU Chang, YAN Zhishan, LIU Dajun. Physiological and Biochemical Analysis of Exogenous Melatonin for Reducing Propamocarb Residues in Cucumber [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 107-113. | 
| [9] | SHI Lihong, SUN Mei, TANG Haiming, WEN Li, LI Chao, CHENG Kaikai, LI Weiyan, XIAO Xiaoping. Soil Nitrogen Fractions and Microbial Diversity in Paddy Field Under Different Fertilization Modes: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 106-110. | 
| [10] | JIANG Shihua, CHI Zaixiang, ZENG Xiaoshan, YANG Xiuxun, MO Qingzhong, CHEN Jinmei, LEI Ying. Meteorological Conditions for Late Blight Occurrence on Winter-planting Potato in Guizhou Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 129-137. | 
| [11] | HE Lei, SUN Enhui, DENG Tao, YONG Cheng, FAN Xiaodong, HUANG Hongying. Effects of Seedling Containers Made of Camphor Tree Processing Residues on Cucumber Seedling Growth and Physiological Characteristics [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 38-46. | 
| [12] | LI Xiaoyan, NI Chang, LIU Xu. Effects of Different Control Methods on Root-knot Nematode of Greenhouse Cucumber [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 130-133. | 
| [13] | LIU Danyang, CUI Rufei, GENG Gui, WANG Yuguang. Pathogenic Bacteria of Sugar Beet Blight: Isolation and Identification [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 113-117. | 
| [14] | TAO Zhengda, LI Haoyu, ZHAO Jingxian, WANG Jun. Meteorological Conditions of Dongshan Loquat in 2019 - 2021: Evaluation and Comparative Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 95-101. | 
| [15] | LAI Xiaofang, YU Shanhong, YANG Changliang, LI Lin, CHENG Xu, CHEN Xiaoshang. Fungicide Screening and Control of Stem Blight of Eleocharis dulcis [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 78-86. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||