Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (27): 35-43.doi: 10.11924/j.issn.1000-6850.casb2021-1105
Previous Articles Next Articles
CAO Jingxiao1,2(), LIU Junwu3, CAI Jingju4, FANG Yingchun3, ZHU Jian4, WANG Ping4(
), ZHU Shanshan4, JIANG Xiaxin4
Received:
2021-11-18
Revised:
2022-03-28
Online:
2022-10-05
Published:
2022-09-21
Contact:
WANG Ping
E-mail:360167379@qq.com;pingwang@csuft.edu.cn
CLC Number:
CAO Jingxiao, LIU Junwu, CAI Jingju, FANG Yingchun, ZHU Jian, WANG Ping, ZHU Shanshan, JIANG Xiaxin. Environmental Factors Affecting the Intensity of Phosphorus Release from Sediment: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 35-43.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-1105
[1] | LONG Y, HU X, JIANG J, et al. Phosphorus sorption-Desorption behaviors in the sediments cultured with Hydrilla verticillata and Scripus triqueter as revealed by phosphorus fraction and dissolved organic matter[J]. Chemosphere, 2021, 271:129549. |
[2] | ZHI Y, ZHANG C, HJORTH R, et al. Emerging lanthanum (III)-containing materials for phosphate removal from water: a review towards future developments[J]. Environmnet international, 2020, 145:106115. |
[3] |
COOKE G D, WELCH E B, MARTIN A B, et al. Effectiveness of Al, Ca, and Fe salts for control of internal phosphorus loading in shallow and deep lakes[J]. Hydrobiologia, 1993, 253(1-3):323-335.
doi: 10.1007/BF00050758 URL |
[4] |
TEMPORETTI P, BEAMUD G, NICHELA D, et al. The effect of pH on phosphorus sorbed from sediments in a river with a natural pH gradient[J]. Chemosphere, 2019, 228:287-299.
doi: 10.1016/j.chemosphere.2019.04.134 URL |
[5] |
RAHUTOMO S, KOVAR J L, THOMPSON M L. Phosphorus transformations in stream bank sediments in Iowa, USA, at varying redox potentials[J]. Journal of soils and sediments, 2018, doi: 10.1007/s11368-018-2139-4.
doi: 10.1007/s11368-018-2139-4 |
[6] |
SCHINDLER D W, CARPENTER S R, CHAPRA S C, et al. Reducing phosphorus to curb lake eutrophication is a success[J]. Environmental science & technology, 2016, 50(17):8923-8929.
doi: 10.1021/acs.est.6b02204 URL |
[7] | BOSTRÖM B. Relations between chemistry, microbial biomass and activity in sediments of a sewage-polluted vs. a nonpolluted Eutrophic Lake[J]. Verhandlungen des internationalen verein limnologie, 1988, 23:451-459. |
[8] | 钱轶超, 陈英旭, 楼莉萍, 等. 核磁共振技术在沉积物P素组分及迁移转化规律研究中的应用[J]. 应用生态学报, 2010, 21(7):1892-1898. |
[9] | 黄清辉. 浅水湖泊内源P释放及其生物有效性[D]. 北京: 中国科学院生态环境研究中心, 2005. |
[10] | FU Y Q, ZHOU Y, Li J Q. Sequential fractionation of reactive phosphorus in the sediment of a shallow eutrophic lake-Donghu Lake, China[J]. Journal of environmental sciences, 2000(1):57-62. |
[11] |
KARL D M. Microbially mediated transformations of phosphorus in the sea: new views of an old cycle[J]. Annual review of marine science, 2014, 6:279-337.
doi: 10.1146/annurev-marine-010213-135046 URL |
[12] | 钱秩超. 浅水湖泊沉积物P素迁移转化特征与生物作用影响机制研究—以杭州西湖为例[D]. 杭州: 浙江大学, 2011. |
[13] | 许春雪, 袁建, 王亚平, 等. 沉积物中P的赋存形态及P形态顺序提取分析方法[J]. 岩矿测试, 2011, 30(6):785-794. |
[14] |
LIN P, KLUMP J V, GUO L. Dynamics of dissolved and particulate phosphorus influenced by seasonal hypoxia in Green Bay, Lake Michigan[J]. Science of the total environment, 2016, 541:1070-1082.
doi: 10.1016/j.scitotenv.2015.09.118 URL |
[15] | DAN S F, LIU S M, YANG B. Geochemical fractionation, potential bioavailability and ecological risk of phosphorus in surface sediments of the Cross River estuary system and adjacent shelf, South East Nigeria (West Africa)[J]. Journal of marine systems, 2020, 201:103244. |
[16] | 张友. 荣成天鹅湖湿地有机P分布和周转特征研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2017. |
[17] | 徐程. 茅尾海主要入海河口区不同介质P形态分布特征及迁移转化研究[D]. 桂林: 桂林理工大学, 2020. |
[18] | 陈洁, 许海, 詹旭, 等. 湖泊沉积物—水界面P的迁移转化机制与定量研究方法[J]. 湖泊科学, 2019, 31(4):907-918. |
[19] | 朱广伟, 秦伯强. 沉积物中P形态的化学连续提取法应用研究[J]. 农业环境科学学报, 2003(3):349-352. |
[20] |
RUBAN V, LÓPEZ-SÁNCHEZ J F, PARDO P, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments - A synthesis of recent works[J]. Fresenius’ journal of analytical chemistry, 2001, 370(2-3):224-228.
doi: 10.1007/s002160100753 URL |
[21] |
GONZÁLEZ J. J, PÉREZ B, FERNÁNDEZ E. Analytical phosphorus fractionation in sewage sludge and sediment samples[J]. Analytical and bioanalytical chemistry, 2005, 381(4):873-878.
doi: 10.1007/s00216-004-2989-z URL |
[22] |
RUTTENBERG K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and oceanography, 1992, 37(7):1460-1482.
doi: 10.4319/lo.1992.37.7.1460 URL |
[23] | 丰茹江, 李思敏, 张文强, 等. 基于液相31P核磁共振技术的不同地理区域湖泊沉积物生物质P(Biogenic-P)形态特征研究[J]. 环境科学学报, 2019, 39(5):1590-1598. |
[24] | 刘瑾, 杨建军, 梁新强, 等. 同步辐射X射线吸收近边结构光谱技术在P素固相形态研究中的应用[J]. 应用生态学报, 2011, 22(10):2757-2764. |
[25] | LIU J, HU Y F, YANG J J, et al. Investigation of soil legacy phosphorus transformation in long-term agricultural fields using sequential fractionation, PK-edge XANES and solution PNMR spectroscopy[J]. Environmental science & technology, 2014, 49(1):168-176. |
[26] | 赵宇航, 韩超群, 刘瑾, 等. 不同pH条件下典型有机P核磁图谱差异性解析[J]. 应用化学, 2022, 39(2):315-321. |
[27] | 高春梅, 张中发, 张硕. 海州湾秋季沉积物P的形态分布及生物有效性[J]. 中国环境科学, 2018, 38(4):1499-1509. |
[28] |
RRTNOLDS C S, DAVIES P S. Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective[J]. Biological reviews, 2001, 76(1):27-64.
doi: 10.1111/j.1469-185X.2000.tb00058.x URL |
[29] | 宋小君, 李大鹏, 黄勇. 易悬浮和外源输入下原位覆盖对生物有效P形成的影响[J]. 环境科学学报, 2020, 40(1):205-211. |
[30] |
BRANOM J R, SARKAR D. Phosphorus bioavailability in sediments of a sludge-disposal lake[J]. Environmental geosciences, 2004, 11(1):42-52.
doi: 10.1306/eg.10200303021 URL |
[31] |
HUPFERr M, LEWANDOWSKI J. Oxygen controls the phosphorus release from lake sediments-a long-lasting paradigm in limnology[J]. International review of hydrobiology, 2008, 93(4-5):415-432.
doi: 10.1002/iroh.200711054 URL |
[32] |
SONDERGAARD M, JENSEN J P, JEPPESEN E. Retention and internal loading of phosphorus in shallow. eutrophic lakes[J]. The scientific world journal, 2001, 1:427-442.
doi: 10.1100/tsw.2001.72 URL |
[33] |
BASTAMI K D, NEYESTANI M R, RAEISI H, et al. Bioavailability and geochemical speciation of phosphorus in surface sediments of the Southern Caspian Sea[J]. Marine pollution bulletin, 2018, 126:51-57.
doi: 10.1016/j.marpolbul.2017.10.095 URL |
[34] |
CHEN J, LU S, ZHAO Y, et al. Effects of overlying water aeration on phosphorus fractions and alkaline phosphatase activity in surface sediment[J]. Journal of environmental sciences, 2011, 23(2):206-211.
doi: 10.1016/S1001-0742(10)60394-4 URL |
[35] | WOLTER K D. Restoration of Eutrophic Lakes by phosphorus precipitation, with a case study on Lake Gross-Glienicker[J]. Wetlands: ecology, conservation and management, 2010:85-99. |
[36] |
ZHOU Q, GIBSON C E, ZHU Y. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK[J], Chemosphere, 2001, 42(2001):221-225.
doi: 10.1016/S0045-6535(00)00129-6 URL |
[37] |
JIN X C, WANG S R, PANG Y, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China[J]. Environmental pollution, 2006, 139(2):288-95.
doi: 10.1016/j.envpol.2005.05.010 URL |
[38] |
ZHANG S, WANG W, ZHANG K, et al. Phosphorus release from cyanobacterial blooms during their decline period in eutrophic Dianchi Lake, China[J]. Environmental science and pollution research, 2018, 25(14):13579-13588.
doi: 10.1007/s11356-018-1517-1 URL |
[39] |
FANG T H, CHEN J L, HUH C A. Sedimentary phosphorus species and sedimentation flux in the East China Sea[J]. Continental shelf research, 2007, 27(10-11):1465-1476.
doi: 10.1016/j.csr.2007.01.011 URL |
[40] | 候立军, 陆健健, 刘敏, 等. 长江口沙洲表层沉积物P的赋存形态及生物有效性[J]. 环境科学学报, 2006, 26(3):488-494. |
[41] |
PETTICREW E, Arocena J. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings[J]. The science of the total environment, 2001, 266(1-3):87-93.
doi: 10.1016/S0048-9697(00)00756-7 URL |
[42] |
L’HELGUEN S, CHAUVAUD L, CUET P, et al. A novel approach using the 15N tracer technique and benthic chambers to determine ammonium fluxes at the sediment-water interface and its application in a back-reef zone on Reunion Island (Indian Ocean)[J]. Journal of experimental marine biology and ecology, 2014, 452:143-151.
doi: 10.1016/j.jembe.2013.12.001 URL |
[43] |
SHILLA D A, ASAEDA T, KALIBBALA M. Phosphorus speciation in Myall Lake sediment, NSW, Australia[J]. Wetlands ecology and management, 2009, 17(2):85-91.
doi: 10.1007/s11273-008-9087-5 URL |
[44] |
RYDIN E. Potentially mobile phosphorus in Lake Erken sediment[J]. Water research, 2000, 34(7):2037-2042.
doi: 10.1016/S0043-1354(99)00375-9 URL |
[45] |
KLEEBERG A, KOZERSKI H P. Phosphorus release in lake Großer Müggelsee and its implications for lake restoration[J]. Hydrobiologia, 1997, 342/343:9-26.
doi: 10.1023/A:1017079029053 URL |
[46] | 龚梦丹, 金增锋, 王燕, 等. 长江中下游典型浅水湖泊沉积物-水界面P与铁的耦合关系[J]. 湖泊科学, 2017, 29(5):1103-1111. |
[47] |
CAI Y, GUO L. Abundance and variation of colloidal organic phosphorus in riverine, estuarine and coastal waters in the northern Gulf of Mexico[J]. Limnology and oceanography, 2009, 54(4):1393-1402.
doi: 10.4319/lo.2009.54.4.1393 URL |
[48] |
RUTTENBERG K C, SULAK D J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater[J]. Geochimica et cosmochimica. acta, 2011, 75(15):4095-4112.
doi: 10.1016/j.gca.2010.10.033 URL |
[49] |
NAUSCH M, NAUSCH G. Bioavailability of dissolved organic phosphorus in the Baltic Sea[J]. Marine ecology progress series, 2006, 321:9-17.
doi: 10.3354/meps321009 URL |
[50] | YOSHIMURA T, NISHIOKA J, OGAWA H, et al. Dissolved organic phosphorus production and decomposition during open ocean diatom blooms in the subarctic Pacific. Marine[J]. Chemistry, 2014, 165:46-54. |
[51] |
BAKER D B, CONFESOR R, EWING D E, et al. Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: the importance of bioavailability[J]. Journal of great lakes research, 2014, 40(3):502-517.
doi: 10.1016/j.jglr.2014.05.001 URL |
[52] |
BOYER J N, DAILEY S K, GIBSON P J, et al. The role of dissolved organic matter bioavailability in promoting phytoplankton blooms in Florida Bay[J]. Hydrobiologia, 2006, 569:71-85.
doi: 10.1007/s10750-006-0123-2 URL |
[53] |
REN L X, WANG P F, WANG C, et al. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments[J]. Environmental pollution, 2017, 220:274-285.
doi: 10.1016/j.envpol.2016.09.061 URL |
[54] | 孙宁宁, 陈蕾. 湖泊沉积物P释放的影响因素研究进展[J]. 应用化工, 2020, 49(3):715-718. |
[55] | 胡鹏, 姚义鸣, 胡志弢, 等. 盐碱地区沉积物P释放特性及影响因素[J]. 环境工程学报, 2013, 7(9):3327-3332. |
[56] | 朱健, 李捍东, 王平. 环境因子对底泥释放COD、TN和TP的影响研究[J]. 水处理技术, 2009, 35(8):44-49. |
[57] | 吴小龙, 林建伟, 张宏华, 等. 物理扰动对锆改性沸石改良底泥P吸附和移动的影响[J]. 环境化学, 2019, 38(5):1119-1127. |
[58] | 朱广伟, 秦伯强, 张路, 等. 太湖底泥悬浮中营养盐释放的波浪水槽试验[J]. 湖泊科学, 2005, 17(1):61-68. |
[59] | 王庭健, 苏睿, 金相灿, 等. 城市富营养湖泊沉积物中P负荷及其释放对水质的影响[J]. 环境科学研究, 1994, 7(4):12-19. |
[60] | 俞阳, 林建伟, 詹艳慧, 等. 静止和水动力扰动状态下锆改性沸石添加对河道底泥P迁移转化的影响[J]. 环境科学, 2019, 40(3):1337-1346. |
[61] | 孙小静, 朱广伟, 罗潋葱, 等. 浅水湖泊沉积物P释放的波浪水槽试验研究[J]. 中国科学:地球科学, 2005, 35(S2):81-89. |
[62] | 郑西来, 张俊杰, 陈蕾. 再悬浮条件下沉积物内源P迁移-转化机制研究进展[J]. 水科学进展, 2013, 24(2):287-295. |
[63] | 鲍林林, 李叙勇. 河流沉积物P的吸附释放特征及其影响因素[J]. 生态环境学报, 2017, 26(2):350-356. |
[64] | 姜敬龙, 吴云海. 底泥P释放的影响因素[J]. 环境科学与管理, 2008, 33(6):43-46. |
[65] | 安敏, 文威, 孙淑娟, 等. pH和盐度对海河干流表层沉积物吸附解吸P(P)的影响[J]. 环境科学学报, 2009, 29(12):2616-2622. |
[66] | 袁和忠, 沈吉, 刘恩峰, 等. 模拟水体pH控制条件下太湖梅梁湾沉积物中P的释放特征[J]. 湖泊科学, 2009, 21(5):663-668. |
[67] |
KRALCHEYSKA R P, PRUCEK R, KOLAŘÍK J, et al. Remarkable efficiency of phosphate removal: ferrate(VI)-induced in situ sorption on core-shell nanoparticles[J]. Water research, 2016, 103:83-91.
doi: 10.1016/j.watres.2016.07.021 URL |
[68] | ZHANG H, KOVAR J L. Fractionation of soil phosphorus[M]. In: Kovar JL, Pierzynski GM (eds) Methods of phosphorus analysis for soils, sediments, residuals, and water, Southern cooperative series bulletin, 2nd edn. Virginia Polytechnic Institute and State University, Blacksburg, 2009, 408:9-32. |
[69] |
RAHUTOMO S, KOVAR J L, THOMPSON M L. Phosphorus transformations in stream bank sediments in Iowa, USA, at varying redox potentials[J]. Journal of soils and sediments, 2019, 19:1029-1039.
doi: 10.1007/s11368-018-2139-4 URL |
[70] |
JIANG X, JIN X C, YAO Y, et al. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China[J]. Water research, 2008, 42(8-9):2251-2259.
doi: 10.1016/j.watres.2007.12.003 URL |
[71] |
MEIS S, SPEARS B M, MABERLY S C, et al. Assessing the mode of action of Phoslock in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK)[J]. Water research, 2013, 47(13):4460-4473.
doi: 10.1016/j.watres.2013.05.017 URL |
[72] |
LIU Q, DING S M, CHEN X, et al. Effects of temperature on phosphorus mobilization in sediments in microcosm experiment and in the field[J]. Applied geochemistry, 2018, 88:158-166.
doi: 10.1016/j.apgeochem.2017.07.018 URL |
[73] | 刘伟, 陈振楼, 王军, 等. 小城镇河流底泥沉积物-上覆水P迁移循环特征[J]. 农业环境科学学报, 2004, 23(4):727-730. |
[74] |
KIM L H, CHOI E, STENSTROM M K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments[J]. Chemosphere, 2003, 50(1):53-61.
doi: 10.1016/S0045-6535(02)00310-7 URL |
[75] | 葛绪广, 王国祥, 陈成忠, 等. 苦草生长对沉积物中P迁移转化的影响[J]. 生态学报, 201434(20):5802-5811. |
[76] | 司静, 邢奕, 卢少勇, 等. 沉水植物衰亡过程中氮P释放规律及温度影响的研究[J]. 中国农学通报, 2009, 25(1):217-223. |
[77] | 张云, 王圣瑞, 段昌群, 等. 滇池沉水植物生长过程对间隙水氮、P时空变化的影响[J]. 湖泊科学, 2018, 30(2):314-325. |
[78] | 包先明, 陈开宁, 范成新. 种植沉水植物对富营养化水体沉积物中P形态的影响[J]. 土壤通报, 2006(4):710-715. |
[79] | 王博, 李法云, 范志平. 不同温度下黑藻分解过程及对水体-底泥碳、氮、P的影响研究[J]. 环境污染与防治, 2013, 35(10):46-51,484-488. |
[80] | 尚媛媛, 关保华, 郑建伟, 等. 沉水植物苦草和轮叶黑藻对水环境的影响[J]. 中国农学通报, 2016, 32(28):155-159. |
[81] | 华祖林, 康蓓蓓, 巫丹. 苦草与菖蒲对太湖梅梁湾沉积物P释放抑制的研究[J]. 环境科学与技术, 2013, 36(9):31-35. |
[82] | 王立志, 董彬, 宋红丽, 等. 沉水植物苦草对沉积物各形态P时空分布的影响[J]. 水生态学杂志, 2019, 40(4):58-64. |
[83] | 易文利, 王圣瑞, 杨苏文, 等. 外加碳源及沉水植物对沉积物各形态P的影响,生态环境学报, 2011, 20(6-7):1092-1096. |
[84] | 蔡景波, 丁学锋, 彭红云, 等. 环境因子及沉水植物对底泥P释放的影响研究[J]. 水土保持学报, 2007(2):151-154. |
[85] |
CAO X, WANG Y, HE J, et al. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi[J]. Environmental pollution, 2016, 219:580-587.
doi: 10.1016/j.envpol.2016.06.017 URL |
[86] | 杨赵. 湖泊沉积物中氮P源-汇现象影响因素研究进展[J]. 环境科学导刊, 2017, 36(A1):16-19,29. |
[87] | HAO J, LIAN B, LIU H, et al. The release of phosphorus from sediment to lake water induced by cyanobacterial blooms and phosphorus removal by cell harvesting[J]. Geomicrobiology journal, 2016, 33(3-4):348-353. |
[88] | 杨艳青, 刘凌, 陈沐松, 等. 摇蚊幼虫生物扰动对富营养化湖泊内源P释放的影响[J]. 河海大学学报:自然科学版, 2016, 44(6):485-490. |
[89] | 张雷, 古小治, 王兆德, 等. 水丝蚓(Tubificidworms)扰动对P在湖泊沉积物-水界面迁移的影响[J]. 湖泊科学, 2010, 22(5):666-674. |
[90] | 张雷, 古小治, 邵世光, 等. 河蚬(Corbiculafluminea)扰动对湖泊沉积物性质及P迁移的影响[J]. 环境科学, 2011, 32(1):88-95. |
[91] |
LIGI T, OOPKAUP K, TRUU M, et al. Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing[J]. Ecological engineering, 2014, 72:56-66.
doi: 10.1016/j.ecoleng.2013.09.007 URL |
[92] | 郝晓地, 陈峤, 刘然彬. Tetrasphaera聚P菌研究进展及其除P能力辨析[J]. 环境科学学报, 2020, 40(3):741-753. |
[93] |
SONG C L, CAO X Y, ZHOU Y Y, et al. Nutrient regeneration mediated by extracellular enzymes in water column and interstitial water through a microcosm experiment[J]. Science of the total environment, 2019, 670:982-992.
doi: 10.1016/j.scitotenv.2019.03.297 URL |
[94] |
LI Q M, ZHANG W, WANG X X, et al. Phosphorus in interstitial water induced by redox potential in sediment of Dianchi Lake, China[J]. Pedosphere, 2007, 17(6):739-746.
doi: 10.1016/S1002-0160(07)60089-7 URL |
[95] | 龙宏燕. 太湖沉积物中P素分布特征与解P菌影响机制[D]. 南京: 南京大学, 2020. |
[96] | 李勇. 三岔湖微生物群落结构及其在P素迁移转化中的作用[D]. 西安: 西南交通大学, 2020. |
[97] |
CHEN M, DING S, CHEN X, et al. Mechanisms driving phosphorus release during algal blooms based on hourly changes in ironand phosphorus concentrations in sediments[J]. Water research, 2018, 133:153-164.
doi: 10.1016/j.watres.2018.01.040 URL |
[1] | WANG Yan, WANG Liwei, ZHAO Hongyan, ZHAO Min, YANG Hongyan. Characteristics of Nutrients and Microbial Community Composition of Different Panax ginseng Cultivation Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 60-68. |
[2] | CHU Xiangqian, LI Hongna, LV Weiguang, ZHENG Xianqing, LI Shuangxi, ZHANG Juanqin, WANG Quanhua, ZHANG Hanlin. Nutrients and Heavy Metals in Sediments and Substrate of Shuifeng Lake Basin: Investigation and Evaluation [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 72-78. |
[3] | GAO Yan, LI Zhifei, LIU Yang, WANG Guangjun, XIE Jun, GUO Zhaoliang. Biodegradation of Aquatic Plant Residues in Macrophytic Lake: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 53-59. |
[4] | MA Jie, JIANG Yue, ZHANG Xiu, WANG Jian. Analysis of Nitrogen and Phosphorus Pollution in Water and Sediment of Black and Odorous Water Bodies in Rural Area of Chongqing [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 92-96. |
[5] | Li Jingjing, Li Delu, Man Duoqing, Yan Zizhu, Zhang Dekui, Ma Junmei, Guo Shujiang. Comparison of Wind and Sand Flow Characteristics of Two Types of Sand Accretion Instruments on Abandoned Farmland of Different Years [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 60-65. |
[6] | Wu Yunfei, Zhang Yong, Wang Leilei, Yu Xurun, Xiong Fei. Starch Quality of Rice Grain: Research Progress on Influencing Factors and Mechanism [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 1-8. |
[7] | Wang Zhaogen, Cao Guo, Pan Jie, Tian Jiali, Wang Yuan, Liu Kai. The Fish Community Structure and Its Relationship with Environmental Factors in Zhenjiang Hechang Section of the Yangtze River [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 139-146. |
[8] | Song Chao, Zou Jianmin, Wang Qian, Chen Xi, Fang Longxiang, Qiu Liping, Chen Jiazhang. Influence of Chiral Difference on the Degradation of Fenvalerate in Aquaculture Sediment Environment [J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 153-158. |
[9] | Li Qiaoyun, Liao Juyang, Xu Wen, Liu Yan, Liao Peng, Wu Linshi, Song Yin, Wang Ling, Zhang Juan, Huang Yaqi, Tan Zhihu. Evaluation of Water Environmental Characteristics and Eutrophication of Songya Lake Wetland [J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 85-91. |
[10] | Liu Kaiyuan, Wang Maoliang, Xin Haibo, Zhang Hua, Cong Richen, Huang Dazhuang. Anthocyanin Biosynthesis and Regulate Mechanisms in Plants: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 41-51. |
[11] | Zhu Lin, Bai Zhenqing, Wang Yanfeng, Wu Jiawen. The Effect of Abiotic Stresses on Sugar Yield in Energy Crops: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 6-11. |
[12] | Dong Xinxu, Fan Limin, Qiu Liping, Li Dandan, Dong Yuanyuan, Guo Nannan, Liu Xiangli, Qin Lu, Deng Ru, Chen Jiazhang. Metabolic Diversity of Microbial Communities in the Lower Reaches of the Yangtze River and the Influencing Factors [J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 58-65. |
[13] | Tong Long, Zhang Lei, Chen Lijie, Gao Yongjun, Geng Yanghui, Li Bin. Photosynthesis and Transpiration Characteristics of Polygonatum cyrtonema Under Different Shading Treatments [J]. Chinese Agricultural Science Bulletin, 2020, 36(28): 84-91. |
[14] | Huang Zhuyu, Fang Longxiang, Song Chao, Mussa Ramadhan Said, Yang Guang, Li Tian, Chen Jiazhang. Temperature and pH: Effect on the Elimination Rule of Enrofloxacin and Its Metabolite Ciprofloxacin in Fishery Lower Water Bodies [J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 132-139. |
[15] | Zhang Yuqun, Ge Changzi, Liu Lixiao. Isothermal Adsorption/Desorption of Phosphate at Sediment Surface: Responses to Oxygen-consuming Organic Matters [J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 59-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||