[1] |
Schneider D R, Saraiva A M, Azzoni A R, et al. Overexpression and purification of PWL2D, a mutant of the effector protein PWL2 from Magnaporthe grisea.[J]. Protein Expression & Purification, 2010,74(1):24-31.
doi: 10.1016/j.pep.2010.04.020
URL
pmid: 20438845
|
[2] |
梁华兵, 王晓婉, 胡晓岚, 等. 水稻稻瘟病抗病基因Pi63顺式作用元件的载体构建[J]. 中国农学通报, 2015,31(30):220-224.
|
[3] |
Couch B C, Kohn L M. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea[J]. Mycologia, 2002,94(4):683-693.
doi: 10.1080/15572536.2003.11833196
URL
pmid: 21156541
|
[4] |
He Y, Zhu M, Huang J, et al. Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae[J]. Canadian Journal of Plant Pathology, 2019,41(1):47-59.
doi: 10.1080/07060661.2018.1564792
URL
|
[5] |
Tang W, Jiang H, Zheng Q, et al. Isopropylmalate isomerase MoLeu1 orchestrates leucine biosynjournal, fungal development, and pathogenicity in Magnaporthe oryzae[J]. Applied Microbiology and Biotechnology, 2018,103(1):327-337.
doi: 10.1007/s00253-018-9456-9
URL
pmid: 30357439
|
[6] |
Yuemin P, Rui P, Leyong T, et al. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzae[J]. Current Genetics, 2018.
doi: 10.1007/s00294-020-01073-z
URL
pmid: 32249353
|
[7] |
Talbot N J. On the Trail of a Cereal Killer: Exploring the Biology of Magnaporthe grisea[J]. Annual Review of Microbiology, 2003,57(1):177-202.
doi: 10.1146/annurev.micro.57.030502.090957
URL
|
[8] |
Jones K, Khang C H. Vacuole Dynamics in Rice Cells Invaded by the Blast Fungus Magnaporthe oryzae[J]. Plant Vacuolar Trafficking, 2018,1789:195-203.
|
[9] |
Shao Z, Li Z, Fu Y, et al. Induction of defense responses against Magnaporthe oryzae in rice seedling by a new potential biocontrol agent Streptomyces JD211.[J]. Journal of Basic Microbiology, 2018,58(8):686-697.
doi: 10.1002/jobm.201800100
URL
pmid: 29901825
|
[10] |
Gladieux P, Condon A B, Ravel B S, et al. Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus Magnaporthe oryzae[J]. mBio, 2018,9(1):e01219-17.
doi: 10.1128/mBio.01219-17
URL
pmid: 29487238
|
[11] |
Liang Y, Zhao J, Wang C, et al. Infection with blast fungus (Magnaporthe orzyae), leads to increased expression of an arabinogalactan-protein epitope in both susceptible and resistant rice cultivars[J]. Physiological and Molecular Plant Pathology, 2018: S088557651730334X.
|
[12] |
Allen R L, Bittner-Eddy P D, Grenville-Briggs L J, et al. Host-parasite coevolutionary conflict between Arabidopsis and downy mildew[J]. Science, 2004,306(5703):1957-1960.
doi: 10.1126/science.1104022
URL
pmid: 15591208
|
[13] |
Zheng Y, Zheng W, Lin F, et al. AVR1-CO39 is a predominant locus governing the broad avirulence of Magnaporthe oryzae 2539 on cultivated rice (Oryza sativa L.)[J]. Mol Plant Microbe Interact, 2011,24(1):13-17.
doi: 10.1094/MPMI-10-09-0240
URL
pmid: 20879839
|
[14] |
徐鑫, 郭旭梦, 刘松青, 等. 稻瘟病抗性基因Pi63启动子4个构建体的表达及抗性分析[J]. 中南民族大学学报:自然科学版, 2018,37(2):36-40.
|
[15] |
田红刚. 黑龙江省稻瘟病菌致病性和品种抗性改良研究[D]. 沈阳:沈阳农业大学, 2016.
|
[16] |
Liu J L, Wang X J, Mitchell T, et al. Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction[J]. Molecular Plant Pathology, 2010,11(3):419-427.
doi: 10.1111/j.1364-3703.2009.00607.x
URL
pmid: 20447289
|
[17] |
姜华, 余欢, 王艳丽, 等. 稻瘟病菌无毒基因序列变异研究进展[J]. 浙江农业学报, 2015,27(3):512-520.
|
[18] |
Orbach M J, Farrall L, Sweigard J A, et al. A Telomeric Avirulence Gene Determines Efficacy for the Rice Blast Resistance Gene Pi-ta[J]. The Plant Cell, 2000,12(11):2019-2032.
doi: 10.1105/tpc.12.11.2019
URL
pmid: 11090206
|
[19] |
Heidi U Böhnert, Fudal I, Dioh W, et al. A Putative Polyketide Synthase/Peptide Synthetase from Magnaporthe grisea Signals Pathogen Attack to Resistant Rice[J]. The Plant Cell, 2004,16(9):2499-2513.
doi: 10.1105/tpc.104.022715
URL
pmid: 15319478
|
[20] |
Li W, Wang B, Wu J, et al. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t[J]. Mol Plant Microbe Interact, 2009,22(4):411-420.
doi: 10.1094/MPMI-22-4-0411
URL
pmid: 19271956
|
[21] |
Yoshida K, Saitoh H, Fujisawa S, et al. Association Genetics Reveals Three Novel Avirulence Genes from the Rice Blast Fungal Pathogen Magnaporthe oryzae[J]. The plant cell online, 2009,21(5):1573-1591.
doi: 10.1105/tpc.109.066324
URL
|
[22] |
龙子文, 周杰, 王春台, 等. 鄂西地区稻瘟病菌生理小种文库的构建及初步鉴定[J]. 安徽农业科学, 2012,40(24):12065-12067.
|
[23] |
李泌, 王春台, 周杰, 等. 2011年鄂西地区水稻稻瘟病菌遗传多样性的分析[J]. 安徽农业科学, 2014,42(14):4249-4251.
|
[24] |
田珂, 杨武, 李泌, 等. 鄂西南地区2012-2014年稻瘟病菌致病性变化分析[J]. 华中农业大学学报, 2017,36(05):10-14.
|
[25] |
Xin X, Wu Y, Ke T, et al. Genetic diversity and pathogenicity dynamics of Magnaporthe oryzae in the Wuling Mountain area of China[J]. European Journal of Plant Pathology, 2019,153(3):731-742.
doi: 10.1007/s10658-018-1587-4
URL
|
[26] |
Song M Y, Kim C Y, Han M, et al. Differential requirement of Oryza sativa RAR1 in immune receptor-mediated resistance of rice to Magnaporthe oryzae[J]. Molecules and Cells, 2013,35(4):327-334.
doi: 10.1007/s10059-013-2317-6
URL
|
[27] |
Chang-Jie J, Xiao-Long L, Xin-Qiong L, et al. Stunted Growth Caused by Blast Disease in Rice Seedlings Is Associated with Changes in Phytohormone Signaling Pathways[J]. Frontiers in Plant Science, 2017,8:1558.
doi: 10.3389/fpls.2017.01558
URL
pmid: 28932234
|
[28] |
Wan J, Wenli Z, Ron A, et al. A method for determining zygosity of transgenic zebrafish by TaqMan real-time PCR[J]. Analytical Biochemistry, 2005,344(2):240-246.
doi: 10.1016/j.ab.2005.06.046
URL
pmid: 16061191
|
[29] |
Livak . Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method[J]. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
URL
pmid: 11846609
|