中国农学通报 ›› 2021, Vol. 37 ›› Issue (28): 68-75.doi: 10.11924/j.issn.1000-6850.casb2020-0756
所属专题: 土壤重金属污染
收稿日期:
2020-12-07
修回日期:
2021-03-18
出版日期:
2021-10-05
发布日期:
2021-10-28
通讯作者:
蔡柏岩
作者简介:
毛异之,男,1997年出生,湖北潜江人,硕士,研究方向:修复生态学。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,E-mail: 基金资助:
Mao Yizhi1,2,3(), Cai Baiyan1,2,3(
)
Received:
2020-12-07
Revised:
2021-03-18
Online:
2021-10-05
Published:
2021-10-28
Contact:
Cai Baiyan
摘要:
抗生素类(antibiotic)化合物具有广谱、速效性、相对细胞低害性等特点,在哺乳动物类群的细菌感染治疗剂,及动物饲料或植物有机肥料有广泛应用。伴随着农业现代化的建设,近47种抗生素类化合物通过各类复合型有机肥的施用、农业灌溉用水、污水及人为污染物倾倒等途径,直接或间接的侵入土壤生态系统中,2013—2017年中国农业土地的平均抗生素含量约上升18.6%,部分采样土地的污染当量超过联合国规定正常值的157%。过量的抗生素会对土壤生物群造成干扰,相关研究表明,土壤中的抗生素类分子可以通过蒸腾作用进入植物体,而对根系呼吸和蒸腾运输等生理活动造成干扰。此外,抗生素也会通过食物链扩散和富集,进而扩大其污染的范围和伤害。笔者就2010—2020年间有关土壤抗生素的相关研究进行统计和归纳总结,并就土壤中抗生素环境行为和时空分布情况的研究进展进行综合论述,旨在为土壤中抗生素的相关研究提供理论参考和数据支持。
中图分类号:
毛异之, 蔡柏岩. 土壤中抗生素污染的时空分布和环境行为研究[J]. 中国农学通报, 2021, 37(28): 68-75.
Mao Yizhi, Cai Baiyan. The Temporal and Spatial Distribution and Environmental Behavior of Antibiotic Pollution in Soil[J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 68-75.
[1] |
Finlay A C, Hobby G L, P’An S Y, et al. Terramycin, a New Antibiotic[J]. Science, 1950, 111:85.
doi: 10.1126/science.111.2874.85.b URL |
[2] |
Witte W. BIOMEDICINE: Medical Consequences of Antibiotic Use in Agriculture[J]. Science, 1998, 279:996-997.
pmid: 9490487 |
[3] | Lemon K P, Armitage G C, Relman D A, et al. Microbiota-Targeted Therapies: An Ecological Perspective[J]. Science translational medicine, 2012, 4:135-137. |
[4] |
Laxminarayan R. Antibiotic effectiveness: Balancing conservation against innovation[J]. Science, 2014, 345:1299-1301.
doi: 10.1126/science.1254163 pmid: 25214620 |
[5] |
Levin Reisman I, Ronin I, Gefen O, et al. Antibiotic tolerance facilitates the evolution of resistance[J]. Science, 2017, 355:826-830.
doi: 10.1126/science.aaj2191 pmid: 28183996 |
[6] |
Park J, Gasparrini A J, Reck M R, et al. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes[J]. Nature chemical biology, 2017, 13(7):730-736.
doi: 10.1038/nchembio.2376 URL |
[7] |
Ndeh D, Rogowski A, Cartmell A, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions[J]. Nature, 2017, 544:65-70.
doi: 10.1038/nature21725 URL |
[8] | 赵方凯, 杨磊, 乔敏, 等. 土壤中抗生素的环境行为及分布特征研究进展[J]. 土壤, 2017, 49(3):428-436. |
[9] | Meredith H R, Andreani V, Ma H R, et al. Applying ecological resistance and resilience to dissect bacterial antibiotic responses[J]. Science Advances, 2018, 4(12):u1873. |
[10] |
Lázár V, Martins A, Spohn R, et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides[J]. Nature Microbiology, 2018, 3(6):718-731.
doi: 10.1038/s41564-018-0164-0 URL |
[11] | Zampieri M, Szappanos B, Buchieri M V, et al. High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds[J]. Science translational medicine, 2018, 10:l3973. |
[12] | 赵方凯, 杨磊, 李守娟, 等. 长三角典型城郊土壤抗生素空间分布的影响因素研究[J]. 环境科学学报, 2018, 38(3):1163-1171. |
[13] | 张宁, 李淼, 刘翔. 土壤中抗生素抗性基因的分布及迁移转化[J]. 中国环境科学, 2018, 38(7):2609-2617. |
[14] | 张步迪, 林青, 曹东平, 等. 磺胺嘧啶在土壤及土壤组分中的吸附/解吸动力学[J]. 土壤, 2018, 50(5):949-957. |
[15] | 常旭卉, 贾书刚, 王淑平, 等. 粪源环丙沙星对潮土中抗生素抗性基因的影响[J]. 农业环境科学学报, 2018, 37(12):2727-2737. |
[16] | 秦俊梅, 熊华烨, 李兆君. 施用含四环素类抗生素鸡粪对玉米生长的影响及其残留特征[J]. 灌溉排水学报, 2018, 37(9):22-28. |
[17] | 熊华烨, 秦俊梅, 马浩天. 含土霉素土壤添加不同基质后对玉米生理特性的影响[J]. 水土保持学报, 2018, 32(2):283-289. |
[18] | 方媛瑗, 丁惠君. 抗生素的生态毒性效应研究进展[J]. 环境科学与技术, 2018, 41(5):102-110. |
[19] | 王畅, 李余杰, 张智, 等. 氟喹诺酮类抗生素在农业紫色土中的吸附研究[J]. 土壤, 2018, 50(5):958-964. |
[20] | 邹勇, 黄蔚虹, 陈永杰, 等. 金霉素胁迫下室内粪土模型中菌群多样性与四环素类抗生素耐药基因丰度研究[J]. 华南农业大学学报, 2018, 39(5):65-73. |
[21] | 李秀文, 何益得, 张巍, 等. 磺胺类抗生素对水环境的污染及生态毒理效应[J]. 环境科学与技术, 2018, 41(S1):62-67. |
[22] | Zou S, Wang Y, Zhang J, et al. Analysis of Physical and Chemical Properties of Antibiotic Bacterial Residue[J]. Environmental Science & Technology, 2018. |
[23] | Archundia D, Boithias L, Duwig C, et al. Environmental fate and ecotoxicological risk of the antibiotic sulfamethoxazole across the Katari catchment (Bolivian Altiplano): Application of the GREAT-ER model[J]. Science of the Total Environment, 2018, 622:1046-1055. |
[24] |
Boy Roura M, Mas-Pla J, Petrovic M, et al. Towards the understanding of antibiotic occurrence and transport in groundwater: Findings from the Baix Fluvià alluvial aquifer(NE Catalonia, Spain)[J]. The Science of the total environment, 2018, 612:1387-1406.
doi: S0048-9697(17)32354-9 pmid: 28898946 |
[25] |
Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria[J]. Nature, 2018, 555:623-628.
doi: 10.1038/nature25979 URL |
[26] |
Pansa P, Hsia Y, Bielicki J, et al. Evaluating Safety Reporting in Paediatric Antibiotic Trials, 2000-2016: A Systematic Review and Meta-Analysis[J]. Drugs, 2018, 78:231-244.
doi: 10.1007/s40265-017-0850-x URL |
[27] |
Pan M, Chu L M. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China[J]. The Science of the Total Environment, 2018, 624:145-152.
doi: 10.1016/j.scitotenv.2017.12.008 URL |
[28] |
Guo Xinyan, Yan Zheng, Zhang Yi, et al. Behavior of antibiotic resistance genes under extremely high-level antibiotic selection pressures in pharmaceutical wastewater treatment plants[J]. Science of the Total Environment, 2018, 612:119-128.
doi: 10.1016/j.scitotenv.2017.08.229 URL |
[29] |
Durão P, Balbontín R, Gordo I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance[J]. Trends in microbiology, 2018, 26(8):677-691.
doi: 10.1016/j.tim.2018.01.005 URL |
[30] |
Zeng Q, Sun J, Zhu L. Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China[J]. Chemosphere, 2019, 224:900-909.
doi: 10.1016/j.chemosphere.2019.02.167 URL |
[31] | Pärnänen K M M, Narciso-da-Rocha C, Kneis D, et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence[J]. Science Advances, 2019, 5(3):u9124. |
[32] |
Nyström M, Jouffray J B, Norström A V, et al. Anatomy and resilience of the global production ecosystem[J]. Nature, 2019, 575:98-108.
doi: 10.1038/s41586-019-1712-3 URL |
[33] |
Luther A, Urfer M, Zahn M, et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria[J]. Nature, 2019, 576:452-458.
doi: 10.1038/s41586-019-1665-6 URL |
[34] | Van Boeckel T P, Pires J, Silvester R, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries[J]. Science, 2019, 365:w1944. |
[35] | 孔晨晨, 张世文, 聂超甲, 等. 农用地土壤抗生素组成特征与积累规律[J]. 环境科学, 2019, 40(4):463-471. |
[36] | 赵远超, 武俊, 胡锋, 等. 生物质炭与噬菌体联用阻控与灭活土壤-生菜体系中抗生素抗性致病细菌[J]. 土壤, 2019, 51(5):942-948. |
[37] | 彭聪, 巴俊杰, 胡芬, 等. 广西会仙岩溶湿地典型抗生素污染特征及生态风险评估[J]. 环境科学学报, 2019, 39(7):2207-2217. |
[38] | 吴迎, 冯朋雅, 李荣, 等. 环境抗生素污染的微生物修复进展[J]. 生物工程学报, 2019, 35(11):2133-2150. |
[39] |
Menz J, Olsson O, Kuemmerer K. Antibiotic residues in livestock manure: Does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment?[J]. Journal of Hazardous Materials, 2019, 379:120801-120807.
doi: 10.1016/j.jhazmat.2019.120801 URL |
[40] |
Kenyon S, Pike K, Jones D R, et al. Childhood outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour:7-year follow-up of the ORACLE II trial[J]. Lancet, 2019, 372:1319-1327.
doi: 10.1016/S0140-6736(08)61203-9 URL |
[41] |
Stewart Philip S Costertona J William. Antibiotic resistance of bacteria in biofilms[J]. The Lancet, 2019, 358:135-138.
doi: 10.1016/S0140-6736(01)05321-1 URL |
[42] |
Lau C H, Tien Y, Stedtfeld R D, et al. Impacts of multi-year field exposure of agricultural soil to macrolide antibiotics on the abundance of antibiotic resistance genes and selected mobile genetic elements[J]. Science of the Total Environment, 2020, 727:138520.
doi: 10.1016/j.scitotenv.2020.138520 URL |
[43] |
Uddin M, Chen J, Qiao X, et al. Insight into dynamics and bioavailability of antibiotics in paddy soils by in situ soil moisture sampler[J]. Science of the Total Environment, 2020, 703:135562.
doi: 10.1016/j.scitotenv.2019.135562 URL |
[44] |
Zhao F, Chen L, Yang L, et al. Effects of land use and rainfall on sequestration of veterinary antibiotics in soils at the hillslope scale[J]. Environmental Pollution, 2020, 260:114112.
doi: 10.1016/j.envpol.2020.114112 URL |
[45] | McDowell N G, Allen C D, Anderson-Teixeira K, et al. Pervasive shifts in forest dynamics in a changing world[J]. Science, 2020, 368:z9463. |
[46] | Lazzaro B P, Zasloff M, Rolff J. Antimicrobial peptides: Application informed by evolution[J]. Science, 2020, 368:u5480. |
[47] |
Sun H, Zhang Q, Wang R, et al. Resensitizing carbapenem- and colistin-resistant bacteria to antibiotics using auranofin[J]. Nature Communications, 2020, 11(1):5263.
doi: 10.1038/s41467-020-18939-y URL |
[48] |
Abbaspour A, Zohrabi F, Dorostkar V, et al. Remediation of an oil-contaminated soil by two native plants treated with biochar and mycorrhizae[J]. Journal of Environmental Management, 2020, 254:109755.
doi: S0301-4797(19)31473-2 pmid: 31733468 |
[49] |
Sun S, Lu C, Liu J, et al. Antibiotic resistance gene abundance and bacterial community structure in soils altered by Ammonium and Nitrate Concentrations[J]. Soil Biology and Biochemistry, 2020, 149:107965.
doi: 10.1016/j.soilbio.2020.107965 URL |
[50] | Bhagat C, Kumar M, Tyagi V K, et al. Proclivities for prevalence and treatment of antibiotics in the ambient water: a review[J]. Clean Water, 2020, 3(1):42. |
[51] |
Yu M, Li Z, Wang G, et al. Dietary supplementation with citrus extract alters the plasma parameters, circulating amino acid profiles and gene expression of small intestinal nutrient transporters in Chinese yellow-feathered broilers[J]. Journal of the Science of Food and Agriculture, 2020, 100(14):5126-5135.
doi: 10.1002/jsfa.v100.14 URL |
[52] | Hernando-Amado S, F Sanz-García, JL Martínez. Rapid and robust evolution of collateral sensitivity in Pseudomonas aeruginosa antibiotic-resistant mutants[J]. Science Advances, 2020, 6(32):eaba5493. |
[53] | Baquero F, Levin B R. Proximate and ultimate causes of the bactericidal action of antibiotics[J]. Nature Reviews Microbiology, 2020. |
[54] |
Wilson D N, Hauryliuk V, Atkinson G C, et al. Target protection as a key antibiotic resistance mechanism[J]. Nature Reviews Microbiology, 2020, 18(11):637-648.
doi: 10.1038/s41579-020-0386-z URL |
[55] | 安博宇, 袁园园, 黄玲利, 等. 头孢菌素类药物在环境中的行为及残留研究进展[J]. 中国抗生素杂志, 2020(6). |
[56] | Zainab Syeda Maria, Junai Muhammad, Xu Nan, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Research, 2020, 187. |
[57] |
Sun Y, Guo Y, Shi M, et al. Effect of antibiotic type and vegetable species on antibiotic accumulation in soil-vegetable system, soil microbiota, and resistance genes[J]. Chemosphere, 2021, 263:128099.
doi: 10.1016/j.chemosphere.2020.128099 URL |
[58] |
Riaz M, Kamran M, Fang Y, et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review[J]. Journal of Hazardous Materials, 2021, 402:123919.
doi: 10.1016/j.jhazmat.2020.123919 URL |
[1] | 崔莹莹, 周波, 陈义勇, 刘嘉裕, 黎健龙, 唐颢, 唐劲驰. 广东茶区土壤肥力时空变化分析与综合评价[J]. 中国农学通报, 2023, 39(1): 85-95. |
[2] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[3] | 曾婕, 余浪, 达布希拉图, 李云驹. 磷基土壤调理剂在低磷红壤上对小白菜生长的影响[J]. 中国农学通报, 2022, 38(9): 81-87. |
[4] | 孙树晴, 丁炜, 孙瑞, 张希财, 兰国玉, 陈伟, 杨川, 吴志祥. 不同林龄橡胶林土壤细菌群落组成及多样性研究[J]. 中国农学通报, 2022, 38(9): 93-100. |
[5] | 叶佩, 刘可群, 申双和, 刘凯文, 刘志雄, 邓艳君. 湖北中稻抽穗开花期高温热害风险分析及区划[J]. 中国农学通报, 2022, 38(8): 110-117. |
[6] | 黄浩, 谢晋, 袁文彬, 王初亮, 陈坤华, 曾繁东, 梁增发, 苏诏, 王维. 不同有机物料对烤烟根系特征及氮磷钾积累量的影响[J]. 中国农学通报, 2022, 38(8): 51-57. |
[7] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[8] | 卢丽兰, 王玉萍, 尹欣幸, 黄英凯, 范海阔. 海南省水果型椰子园土壤养分调查与评价[J]. 中国农学通报, 2022, 38(8): 72-80. |
[9] | 王丽娜, 杨瑛, 杜苏. 生物炭施入对盐碱土壤影响的研究现状[J]. 中国农学通报, 2022, 38(8): 81-87. |
[10] | 赵双梅, 刘宪斌, 李红梅, 董文彩, 沈健萍, 包金美, 梁芳, 鲁美. 云南哀牢山湿性常绿阔叶林土壤碳分布特征[J]. 中国农学通报, 2022, 38(8): 88-95. |
[11] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[12] | 张梦佳, 文方芳, 张雪莲, 赵青春, 郭建明, 廖洪, 刘自飞, 朱文, 韩宝, 葛瑶科, 廖上强, 卢静. 田块尺度设施菜田土壤健康评价方法的初步构建与应用[J]. 中国农学通报, 2022, 38(7): 74-79. |
[13] | 陈慧, 周晓月, 谭诚, 张永春, 汪吉东, 马洪波. 紫云英还田对土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(7): 80-85. |
[14] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. |
[15] | 孙养存, 尹紫良, 葛菁萍. 土壤中重金属污染物的来源及治理方式[J]. 中国农学通报, 2022, 38(6): 75-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||