[1] |
伏成秀, 李迅东, 张远强, 等. 云南香蕉产业发展现状及竞争力比较[J]. 热带农业科学, 2022, 42(8):92-98.
|
[2] |
CHEN X J, ZENG D, XU Y, et al. Perceptions, risk attitude and organic fertilizer investment: Evidence from rice and banana farmers in Guangxi, China[J]. Sustainability, 2018, 10(10):3715.
|
[3] |
ZHONG S, MO Y, GUO G, et al. Effect of continuous cropping on soil chemical properties and crop yield in banana plantation[J]. Journal of agricultural science and technology, 2014, 16(1):239-250.
|
[4] |
杜志雄, 金书秦. 从国际经验看中国农业绿色发展. 世界农业, 2021, 2:4-9.
|
[5] |
WELCH R Y, BEHNKE G D, DAVIS A S, et al. Using cover crops in headlands of organic grain farms: Effects on soil properties, weeds and crop yields[J]. Agriculture ecosystems & environment, 2016, 216:322-332.
|
[6] |
张玲玲, 李青梅, 贾梦圆, 等. 覆盖作物对猕猴桃园土壤氨氧化微生物丰度和群落结构的影响[J]. 植物营养与肥料学报, 2021, 27(3):417-428.
|
[7] |
郭晓睿, 宋涛, 邓丽娟, 等. 果园生草对中国果园土壤肥力和生产力影响的整合分析[J]. 应用生态学报, 2021, 32(11):4021-4028.
doi: 10.13287/j.1001-9332.202111.021
|
[8] |
钱雅丽, 王先之, 来兴发, 等. 多年生牧草种植对苹果园土壤真菌群落特征的影响[J]. 草业学报, 2019, 28(11):124-132.
doi: 10.11686/cyxb2018824
|
[9] |
CYCOŃ M, MROZIK A, PIOTROWSKA-SEGET Z. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity[J]. Frontiers in microbiology, 2019, 10:338.
doi: 10.3389/fmicb.2019.00338
pmid: 30906284
|
[10] |
朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学:生命科学, 2021, 51(1):1-11.
|
[11] |
张晶, 张惠文, 李新宇, 等. 土壤真菌多样性及分子生态学研究进展[J]. 应用生态学报, 2004, 15(10):1958-1962.
|
[12] |
柯开文, 李润唐, 林望达, 等. 秋植香蕉和辣椒复合生产模式应用评价[J]. 中国热带农业, 2012(3):50-52.
|
[13] |
黄继庆, 潘启城, 黄生文. 田东县秋植蕉园套种大白菜栽培技术[J]. 现代农业科技, 2012(6):130-131.
|
[14] |
李进波, 陈静英, 罗江, 等. 香蕉园下魔芋套种技术[J]. 农村实用技术, 2015(4):26-28.
|
[15] |
赵明, 何海旺, 邹瑜, 等. 广西香蕉枯萎病为害调查及套种韭菜防控效果研究[J]. 中国南方果树, 2015, 44(5):55-58.
|
[16] |
汪军, 周游, 杨腊英, 等. 施用复合菌肥与套作对香蕉枯萎病控病作用的影响[J]. 中国果树, 2019(6):69-72.
|
[17] |
SCHMIDT R, MITCHELL J, SCOW K. Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities[J]. Soil biology and biochemistry, 2019, 129:99-109.
|
[18] |
THAPA V R, GHIMIRE R, ACOSTA-MARTÍNEZ V, et al. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems[J]. Applied soil ecology, 2021, 157:103735.
|
[19] |
TAJIK S, AYOUBI S, LORENZ N. Soil microbial communities affected by vegetation, topography and soil properties in a forest ecosystem[J]. Applied soil ecology. 2020, 149:103514.
|
[20] |
YUAN J, WEN T, ZHANG H, et al. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt[J]. The ISME journal, 2020, 14(12):2936-2950.
|
[21] |
LIU S G, GARCÍA-PALACIOS P, TEDERSOO L, et al. Phylotype diversity within soil fungal functional groups drives ecosystem stability[J]. Nature ecology & evolution, 2022, 6(7):900-909.
|
[22] |
COYTE K Z, SCHLUTER J, FOSTER K R. The ecology of the microbiome: networks, competition, and stability[J]. Science, 2015, 350(6261):663-666.
doi: 10.1126/science.aad2602
pmid: 26542567
|
[23] |
LI W Z, LONG Y H, MO F X, et al. Antifungal activity and biocontrol mechanism of Fusicolla violacea J-1 against soft rot in kiwifruit caused by Alternaria alternata[J]. Journal of fungi, 2021, 7(11):937.
|
[24] |
SASAN R K, BIDOCHKA M J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development[J]. American journal of botany, 2012, 99(1):101-107.
doi: 10.3732/ajb.1100136
pmid: 22174335
|
[25] |
LIAO X G, O’BRIEN T R, FANG W G, et al. The plant beneficial effects of Metarhizium species correlate with their association with roots[J]. Applied microbiology and biotechnology, 2014, 98:7089-7096.
doi: 10.1007/s00253-014-5788-2
pmid: 24805846
|
[26] |
MOTISI N, MONTFORT F, FALOYA V, et al. Growing Brassica juncea as a cover crop, then incorporating its residues provide complementary control of Rhizoctonia root rot of sugar beet[J]. Field crops research, 2009, 113(3):238-245.
|
[27] |
RICHARDS A, ESTAKI M, ÚRBEZ-TORRES J R, et al. Cover crop diversity as a tool to mitigate vine decline and reduce pathogens in vineyard soils[J]. Diversity, 2020, 12(4):128.
|
[28] |
ZHENG W, ZHAO Z Y, LV F L, et al. Assembly of abundant and rare bacterial and fungal sub-communities in different soil aggregate sizes in an apple orchard treated with cover crop and fertilizer[J]. Soil biology and biochemistry, 2021, 156:108222.
|
[29] |
VAN DUNG T, NGOC N P, HUNG N N. Impact of cover crop and mulching on soil physical properties and soil nutrients in a citrus orchard[J]. PeerJ, 2022, 10:e14170.
|
[30] |
DEMIR Z, TURSUN N, IŞIK D. Effects of different cover crops on soil quality parameters and yield in an apricot orchard[J]. International journal of agriculture and biology, 2019, 21(2):399-408.
|
[31] |
HONG S, JV H L, LU M, et al. Significant decline in banana Fusarium wilt disease is associated with soil microbiome reconstruction under chilli pepper-banana rotation[J]. European Journal of soil biology, 2020, 97:103154.
|
[32] |
SHEN Z Z, PENTON C R, LV N N, et al. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans[J]. Microbial ecology, 2018, 75:739-750.
doi: 10.1007/s00248-017-1052-5
pmid: 28791467
|