中国农学通报 ›› 2018, Vol. 34 ›› Issue (16): 35-41.doi: 10.11924/j.issn.1000-6850.casb17120116
高振贤,李亚青,田国英,单子龙,张朋伟,李辉利,常旭虹
收稿日期:
2017-12-27
修回日期:
2018-05-16
接受日期:
2018-03-23
出版日期:
2018-06-06
发布日期:
2018-06-06
通讯作者:
常旭虹
基金资助:
Received:
2017-12-27
Revised:
2018-05-16
Accepted:
2018-03-23
Online:
2018-06-06
Published:
2018-06-06
摘要: 小麦高分子量麦谷蛋白亚基(HMW-GS)组成与面包品质密切相关。为了从目前经常使用的一些HMW-GS检测方法中选择满足试验要求的最佳方法,笔者总结了HMW-GS组成,以及利用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE),反相高效液相色谱(RP-HPLC)和聚合酶链式反应(PCR)三种方法检测小麦HMW-GS组成的应用和研究进展,讨论了3种方法检测小麦HMW-GS组成的优缺点,指出常规育种材料或栽培小麦品种优先选择SDS-PAGE和PCR方法检测小麦中的HMW-GS,这两种方法适合对材料中亚基组成进行检测;而含有远缘遗传物质的小麦或近缘种属结合双向电泳或RP-HPLC方法检测HMW-GS,这两种方法适合发现新的亚基类型或对分子量接近的亚基进行检测。最后展望了SDS-PAGE和PCR方法在小麦分子标记辅助育种中应用前景。
高振贤,李亚青,田国英,单子龙,张朋伟,李辉利,常旭虹. 小麦高分子量麦谷蛋白亚基组成和检测研究进展[J]. 中国农学通报, 2018, 34(16): 35-41.
[1] Braun H J, Kosina P, Crouch J. Wheat facts and futures[Z]. Mexico: CIMMYT, 2009. [2] Shiferaw B, Smale M, Braun H J, et al. Crops that feed the world 10. past successes and future challenges to the role played by wheat in global food security. Food Security[J]. 2013,5(3): 291-317. [3] Bonjean A P, Angus W J. The world wheat book: a history of wheat breeding[M]. Londres: Lavoisier, 2001. [4] Snyder H. The proteins of the wheat kernel. Science[J]. 1907,26(677): 865. [5] Shewry P R, Tatham A S, Barro F, et al. Biotechnology of breadmaking: unraveling and manipulating the multi-protein gluten complex. Bio/technology[J]. 1995,13(11): 1185-1190. [6] Sadok W. Water-conservation traits to increase crop yields in water-deficit environments: case studies[M]. Cham: Springer International Publishing, 2017. [7] Payne P I, Holt L M, Krattiger A F, et al. Relationships between seed quality characteristics and HMW glutenin subunit composition determined using wheats grown in Spain. Journal of Cereal Science[J]. 1988,7(3): 229-235. [8] Li Y W, An X L, Yang R, et al. Dissecting and enhancing the contributions of high-molecular-weight glutenin subunits to dough functionality and bread quality. Molecular Plant[J]. 2015,8(2): 332-334. [9] Payne P, Law C, Mudd E. Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theoretical Applied Genetics[J]. 1980,58(3-4): 113-120. [10] Rasheed A, Xia X, Yan Y, et al. Wheat seed storage proteins: advances in molecular genetics, diversity and breeding applications. Journal of Cereal Science[J]. 2014,60(1): 11-24. [11] Wieser H. Chemistry of gluten proteins. Food Microbiology[J]. 2007,24(2): 115-119. [12] Liu Y N, He Z H, Appels R, et al. Functional markers in wheat: current status and future prospects. Theoretical and Applied Genetics[J]. 2012,125(1): 1-10. [13] Zhang P P, He Z H, Chen D S, et al. Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. Journal of Cereal Science[J]. 2007,46(1): 1-10. [14] Lei Z S, Gale K R, He Z H, et al. Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. Journal of Cereal Science[J]. 2006,43(1): 94-101. [15] Ahmad M. Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theoretical Applied Genetics[J]. 2000,101(5-6): 892-896. [16] Payne P I, Lawrence G J. Catalogue of alleles for the complex gene loci Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular weight subunits of glutenin in hexaploid wheat. Cereal Research Communications[J]. 1983,11(1): 29-35. [17] Payne P I, Holt L M, Hutchinson J, et al. Development and characterisation of a line of bread wheat, Triticum aestivum, which lacks the short-arm satellite of chromosome 1B and the Gli-B1 locus. Theoretical and Applied Genetics[J]. 1984,68(4): 327-334. [18] Gianibelli M C, Larroque O R, Macritchie F, et al. Biochemical, genetic, and molecular characterization of wheat endosperm proteins. Cereal Chemistry[J]. 2001,78(6): 635-646. [19] Margiotta B, Urbano M, Colaprico G, et al. Detection of y-type subunit at the Glu-A1 locus in some Swedish bread wheat lines. Journal of Cereal Science[J]. 1996,23(3): 203-11. [20] Butow B J, Gale K R, Ikea J, et al. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theoretical and Applied Genetics[J]. 2004,109(7): 1525-1535. [21] Yang Z J, Li G R, Shu H L, et al. Molecular characterization of high molecular weight glutenin subunit allele 1Bx23 in common wheat introduced from hexaploid Triticale. Hereditas[J]. 2006,143(2006): 159-166. [22] Ribeiro M, Bancel E, Faye A, et al. Proteogenomic characterization of novel x-type high molecular weight glutenin subunit 1Ax1.1. International Journal of Molecular Sciences[J]. 2013,14(3): 5650-5667. [23] Cho S W, Roy S K, Chun J B, et al. Characterization of a novel y-type high molecular weight glutenin subunit at Glu-D1 locus. Genes Genomics[J]. 2017: 1-9. [24] McIntosh R, Dubcovsky J, Rogers J, et al. Catalogue of gene symbols for wheat. In: 12th international wheat genetics symposium[Z]. Yokohama, Japan, 2013. [25] Huang S X, Sirikhachornkit A, Su X J, et al. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America[J]. 2002,99(12): 8133-8138. [26] Xu L L, Li W, Wei Y M, et al. Genetic diversity of HMW glutenin subunits in diploid, tetraploid and hexaploid Triticum species. Genetic Resources and Crop Evolution[J]. 2009,56(3): 377-391. [27] Hu X G, Wu B H, Bi Z G, et al. Allelic variation and distribution of HMW glutenin subunit 1Ay in Triticum species. Genetic Resources and Crop Evolution[J]. 2012,59(4): 491-497. [28] Dong Z Y, Yang Y S, Zhang K P, et al. Development of a new set of molecular markers for examining Glu-A1 variants in common wheat and ancestral species. Plos One[J]. 2017,12(7): e0180766. [29] Wang S L, Yu Z T, Cao M, et al. Molecular mechanisms of HMW glutenin subunits from 1S(l) genome of Aegilops longissima positively affecting wheat breadmaking quality. PLoS ONE[J]. 2013,8(4): e58947. [30] Giles R J, Brown T A. GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theoretical and Applied Genetics[J]. 2006,112(8): 1563-1572. [31] Zhang Y Z, Li X H, Wang A L, et al. Novel x-type high-molecular-weight glutenin genesfrom Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics[J]. 2008,178(1): 23-33. [32] Cao S H, Li Z X, Gong C Y, et al. Identification and characterization of high-molecular-weight glutenin subunits from Agropyron intermedium. PLoS ONE[J]. 2014,9(2): e87477. [33] Ng P K W, Pogna N E, Mellini F, et al. Glu-1 allele compositions of the wheat cultivars registered in Canada. Journal of Genetics and Breeding[J]. 1989,43(1): 53-59. [34] Lerner S E, Kolman M A, Rogers W J. Quality and endosperm storage protein variation in Argentinean grown bread wheat. I. Allelic diversity and discrimination between cultivars. Journal of Cereal Science[J]. 2009,49(3): 337-345. [35] 李硕碧, 单明珠, 李必运. 陕西省小麦品种资源高分子量谷蛋白亚基组成研究. 西北农林科技大学学报(自然科学版)[J]. 2002,30(4): 1-4. [36] 杨恩年, 晏本菊, 唐宗祥, 等. 四川小麦新品种高分子量谷蛋白亚基遗传变异分析. 西南农业学报[J]. 2008,21(3): 557-561. [37] 王静, 刘东涛, 陈荣振, 等. 黄淮麦区部分小麦品种(系)高分子量麦谷蛋白亚基的SDS-PAGE和分子标记分析. 西北农业学报[J]. 2015,24(2): 27-32. [38] Gao L, Ma W, Chen J, et al. Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. Journal of Agricultural Food Chemistry[J]. 2010,58(5): 2777-2786. [39] Liang D, Tang J W, Robertojavier P A, et al. Characterization of CIMMYT bread wheats for high- and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica[J]. 2010,172(2): 235-250. [40] Henkrar F, Elhaddoury J, Iraqi D, et al. Allelic variation at high-molecular weight and low-molecular weight glutenin subunit genes in Moroccan bread wheat and durum wheat cultivars. 3 Biotech [J]. 2017,7(5): 287-296. [41] Bietz J A. Separation of cereal proteins by reversed-phase high-performance liquid chromatography. Journal of Chromatography A[J]. 1983,255(21): 219-238. [42] Courcoux P, Serot T, Larre C, et al. Characterization and identification of wheat cultivars by multi-dimensional analysis of reversed-phase high-performance liquid chromatograms. Journal of Chromatography[J]. 1992,596(2): 225-232. [43] D''Ovidio R, Porceddu E, Lafiandra D. PCR analysis of genes encoding allelic variants of high-molecular-weight glutenin subunits at the Glu-D1 locus. Theoretical and Applied Genetics[J]. 1994,88(2): 175-180. [44] D''Ovidio R, Masci S, Porceddu E. Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat. Theoretical and Applied Genetics[J]. 1995,91(2): 189-194. [45] D''Ovidio R, Anderson O D. PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theoretical and Applied Genetics[J]. 1994,88(6): 759-763. [46] Smith R L, Schweder M E, Barnett R D. Identification of glutenin alleles in wheat and Triticale Using PCR-generated DNA markers. Crop Science[J]. 1994,34(5):1373-1378. [47] Varghese J P, Struss D, Kazman M E. Rapid screening of selected European winter wheat varieties and segregating populations for the Glu-D1d allele using PCR. Plant Breeding[J]. 1996,115(6): 451-454. [48] Ragupathy R, Naeem H A, Reimer E, et al. Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theor Appl Genet[J]. 2008,116(2): 283-296. [49] Jin H, Yan J, Pe?a R J, et al. Molecular detection of high- and low-molecular-weight glutenin subunit genes in common wheat cultivars from 20 countries using allele-specific markers. Crop Pasture Science[J]. 2011,62(9): 746-754. [50] Beasley H L, Uthayakumaran S, Stoddard F L, et al. Synergistic and additive effects of three high molecular weight glutenin subunit loci. II. effects on wheat dough functionality and end-use quality. Cereal Chemistry[J]. 2002,79(2): 301-307. [51] Yang Y, Li S, Zhang K, et al. Efficient isolation of ion beam-induced mutants for homoeologous loci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. Theor Appl Genet[J]. 2014,127(2): 359-372. [52] Wang Z, Li Y, Yang Y, et al. New insight into the function of wheat glutenin proteins as investigated with two series of genetic mutants. Scientific Reports[J]. 2017,7(1): 3428-3441. [53] Liu L, He Z H, Yan J, et al. Allelic variation at the Glu-1 and Glu-3 loci, presence of the 1B.1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica[J]. 2005,142(3): 197-204. [54] He Z H, Liu L, Xia X C, et al. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal chemistry[J]. 2005,82(4): 345-350. [55] Zhang Y, Tang J W, Yan J, et al. The gluten protein and interactions between components determine mixograph properties in an F6 recombinant inbred line population in bread wheat. Journal of cereal science[J]. 2009,50(2): 219-226. [56] Gobaa S, Brabant C, Kleijer G, et al. Effect of the 1BL.1RS translocation and of the Glu-B3 variation on fifteen quality tests in a doubled haploid population of wheat (Triticum aestivum L.). Journal of cereal science[J]. 2008,48(3): 598-603. [57] Pang B S, Zhang X Y. Isolation and molecular characterization of high molecular weight glutenin subunit genes 1Bx13 and 1By16 from hexaploid wheat. 植物学报(英文版)[J]. 2008,50(3): 329-337. [58] Butow B J, Ma W, Gale K R, et al. Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theoretical and Applied Genetics[J]. 2003,107(8): 1524-1532. |
[1] | 刘青松, 贾艳丽, 肖宇, 郭志顶, 纪明妹, 赵忠祥, 黄素芳, 岳明强, 刘震, 阎旭东, 徐玉鹏. 盐胁迫对苜蓿生理性状和生长性状的影响[J]. 中国农学通报, 2022, 38(8): 96-101. |
[2] | 颜越, 金荷仙, 王丽娴. 国内外社区花园健康效益研究进展[J]. 中国农学通报, 2022, 38(34): 68-75. |
[3] | 周庭宇, 肖洋, 黄庆阳, 谢宸, 罗优. 森林凋落物分解的研究进展与展望[J]. 中国农学通报, 2022, 38(33): 44-51. |
[4] | 田雨桐, 韩志伟, 赵然, 田永著, 罗广飞, 杨淼. 西南岩溶农业区典型土地利用对土壤氮素特征的影响[J]. 中国农学通报, 2022, 38(33): 89-96. |
[5] | 王志强, 杨建锋, 石天池. 宁夏石嘴山地区主要粮食作物铜含量特征及影响因素分析[J]. 中国农学通报, 2022, 38(32): 45-54. |
[6] | 周兰兰, 刘梅金, 李明军, 徐冬丽, 王国平, 郭建炜, 胡再青, 张忠广, 李风庆, 桑安平, 张涛, 萧云善, 闫春梅. 不同施肥处理对青稞根际土壤铵态氮和硝态氮的影响[J]. 中国农学通报, 2022, 38(30): 85-90. |
[7] | 隋振全, 范金石, 尹崇山, 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素[J]. 中国农学通报, 2022, 38(3): 121-126. |
[8] | 娄仲山. 高寒草原针茅牧草花期物候变化特征及其影响因子分析[J]. 中国农学通报, 2022, 38(29): 129-134. |
[9] | 权莹, 张晓娟, 赵辉, 孙晓敏, 马秀奇. CRISPER/Cas9系统在植物基因组定点修饰及作物遗传育种中的应用研究进展[J]. 中国农学通报, 2022, 38(26): 9-14. |
[10] | 廖雨梦, 李祖然, 祖艳群, 刘才鑫. 植物对重金属迁移途径及其影响因素的研究进展[J]. 中国农学通报, 2022, 38(24): 63-69. |
[11] | 谢洪宝, 关诗洋, 陈一民, 隋跃宇, 彭博, 汤博宇, 焦晓光. 设施菜田土壤氮素淋溶特征及阻控措施的研究进展[J]. 中国农学通报, 2022, 38(23): 82-87. |
[12] | 胡洁思, 张建国. 基于SBE和SD法的乡村滨水景观带美景度影响因素研究——以衢州庙源溪为例[J]. 中国农学通报, 2022, 38(22): 69-78. |
[13] | 张耀文, 赵鹏涛, 李积铭, 赵小光, 尚毅, 张振兰, 翟周平, 李龙华. 黑小麦光合特性的变化及对产量的影响[J]. 中国农学通报, 2022, 38(21): 7-16. |
[14] | 骆美, 郭龙, 费坤, 张天恩, 李陈, 马友华. 耕地质量提升技术及其应用[J]. 中国农学通报, 2022, 38(21): 76-81. |
[15] | 廖张波, 何远兰, 莫神带. 气象因素对甘蔗生产的影响及环境互作基因研究进展[J]. 中国农学通报, 2022, 38(21): 82-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||