中国农学通报 ›› 2020, Vol. 36 ›› Issue (33): 71-79.doi: 10.11924/j.issn.1000-6850.casb20191200928
所属专题: 土壤重金属污染
周春海1,2(), 张振强2, 黄志红2, 肖选虎2, 杨雍康1, 祖艳群1, 李元1(
)
收稿日期:
2019-12-09
修回日期:
2020-04-22
出版日期:
2020-11-25
发布日期:
2020-11-18
通讯作者:
李元
作者简介:
周春海,男,1995年出生,山东东营人,硕士研究生,主要从事重金属污染土壤修复研究。通信地址:650201 云南农业大学资源与环境学院,E-mail: 基金资助:
Zhou Chunhai1,2(), Zhang Zhenqiang2, Huang Zhihong2, Xiao Xuanhu2, Yang Yongkang1, Zu Yanqun1, Li Yuan1(
)
Received:
2019-12-09
Revised:
2020-04-22
Online:
2020-11-25
Published:
2020-11-18
Contact:
Li Yuan
摘要:
化学钝化修复技术是土壤重金属污染修复的重要方法之一,其钝化成本低、效率高、种类丰富,具有良好的前景。随着目前环境因素复杂化,土壤酸化日益严重,酸性土壤中重金属也变得多种多样,钝化修复能够较好的响应土壤环境变化,对酸性土壤中重金属污染的土壤修复前景较好。本文对单一型及复合型钝化剂的种类、作用原理、存在的问题进行了总结归纳,并分别对其各类型钝化剂研究进展及现状进行综述。单一类钝化剂主要分无机类和有机类钝化剂,其中无机类钝化剂种类较多,应用较广,主要通过吸附、络合、共沉淀等方式钝化土壤中重金属;复合型钝化剂主要有无机—无机、无机—有机、有机—有机型,其作用原理与单一型钝化剂相似,与复合型钝化剂相比单一型钝化剂对多重金属污染土壤的修复效果不明显。与此同时针对目前酸性土壤中镉、铅、砷的钝化修复研究进展进行综述,酸性土壤主要通过调节土壤pH来对其修复,基于此总结归纳了酸性土中3种重金属的最适钝化剂种类及其作用机理,针对当前重金属污染土壤修复存在的问题进行了展望,以期对钝化剂修复重金属污染的土壤提供参考。
中图分类号:
周春海, 张振强, 黄志红, 肖选虎, 杨雍康, 祖艳群, 李元. 不同钝化剂对酸性土壤中重金属的钝化修复研究进展[J]. 中国农学通报, 2020, 36(33): 71-79.
Zhou Chunhai, Zhang Zhenqiang, Huang Zhihong, Xiao Xuanhu, Yang Yongkang, Zu Yanqun, Li Yuan. Passivation and Remediation of Heavy Metals in Acid Soil with Different Passivators: A Research Progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 71-79.
钝化类型 | 钝化 材料 | 钝化剂 | 钝化元素 | 钝化机理 |
---|---|---|---|---|
无机类 | 碱性 物质 | 硅酸钠、硅酸钙、硅肥、石灰、石灰石、碳酸钙镁、碳酸盐类 | Zn、Pb、Ni、Cu、Cd | 通过提升土壤pH,增加土壤表面负电荷,增强重金属的吸附,生成不溶性沉淀[ |
含磷 物质 | 羟基磷灰石、磷矿粉、磷酸盐、磷酸、钙镁磷肥、骨粉、磷石灰、过磷酸钙 | Pb、Cd、Zn、Cu | 与土壤中重金属发生吸附、沉淀和共沉淀[ | |
黏土 矿物 | 海泡石、凹凸棒石、沸石、蒙脱石、膨润土、硅藻土、坡缕石 | Pb、Cd、Cu、Zn、Ni | 钝化剂通过表面吸附、离子交换固定重金属[ | |
工业 废渣 | 赤泥、粉煤灰、金属氧化物、钢渣、电石渣 | As、Pb、Cr | 通过表面吸附、共沉淀及化学专性吸附固定重金属[ | |
有机类 | 有机 废物 | 有机肥、城市污泥、动物粪便、泥炭、作物秸秆 | Pb、Cd、Zn、Cu、Cr、Ni、Hg | 改变重金属在土壤中的存在形态,与其发生吸附、络合作用,增加土壤阳离子交换量来增强其吸附作用[ |
生物炭 | 作物秸秆炭、骨炭、黑炭、果壳炭 | Pb、Cd、Cu、As、Cr | 通过生物炭表面官能团的配位、吸附和离子交换作用固定重金属[ | |
有机酸 | 柠檬酸、酒石酸、草酸、乳酸 | Pb、Cd、Cu、Zn | 与重金属离子产生络合作用,抑制植物对重金属离子的吸收,降低重金属对植物的毒害 |
钝化类型 | 钝化 材料 | 钝化剂 | 钝化元素 | 钝化机理 |
---|---|---|---|---|
无机类 | 碱性 物质 | 硅酸钠、硅酸钙、硅肥、石灰、石灰石、碳酸钙镁、碳酸盐类 | Zn、Pb、Ni、Cu、Cd | 通过提升土壤pH,增加土壤表面负电荷,增强重金属的吸附,生成不溶性沉淀[ |
含磷 物质 | 羟基磷灰石、磷矿粉、磷酸盐、磷酸、钙镁磷肥、骨粉、磷石灰、过磷酸钙 | Pb、Cd、Zn、Cu | 与土壤中重金属发生吸附、沉淀和共沉淀[ | |
黏土 矿物 | 海泡石、凹凸棒石、沸石、蒙脱石、膨润土、硅藻土、坡缕石 | Pb、Cd、Cu、Zn、Ni | 钝化剂通过表面吸附、离子交换固定重金属[ | |
工业 废渣 | 赤泥、粉煤灰、金属氧化物、钢渣、电石渣 | As、Pb、Cr | 通过表面吸附、共沉淀及化学专性吸附固定重金属[ | |
有机类 | 有机 废物 | 有机肥、城市污泥、动物粪便、泥炭、作物秸秆 | Pb、Cd、Zn、Cu、Cr、Ni、Hg | 改变重金属在土壤中的存在形态,与其发生吸附、络合作用,增加土壤阳离子交换量来增强其吸附作用[ |
生物炭 | 作物秸秆炭、骨炭、黑炭、果壳炭 | Pb、Cd、Cu、As、Cr | 通过生物炭表面官能团的配位、吸附和离子交换作用固定重金属[ | |
有机酸 | 柠檬酸、酒石酸、草酸、乳酸 | Pb、Cd、Cu、Zn | 与重金属离子产生络合作用,抑制植物对重金属离子的吸收,降低重金属对植物的毒害 |
钝化类型 | 钝化材料 | 钝化元素 | 钝化机理 |
---|---|---|---|
无机-无机 复合 | 黏土矿物—硅钙物质、黏土矿物—磷肥 | Cd、Pb、Zn、As | 通过沉淀吸附、与离子交换等作用固定重金属[ |
无机-有机 复合 | 碱性物质—生物炭、碱性物质—腐殖酸、 黏土矿物—生物炭 | Cd、Pb、Cu、Zn | 调节土壤pH形成沉淀,吸附络合重金属,从而降低重金属 的生物有效性[ |
有机-有机 复合 | 生物炭—有机肥、生物炭—动物粪便 | Cd、Pb | 重金属发生吸附、离子交换、络合等反应来钝化土壤中的 重金属[ |
钝化类型 | 钝化材料 | 钝化元素 | 钝化机理 |
---|---|---|---|
无机-无机 复合 | 黏土矿物—硅钙物质、黏土矿物—磷肥 | Cd、Pb、Zn、As | 通过沉淀吸附、与离子交换等作用固定重金属[ |
无机-有机 复合 | 碱性物质—生物炭、碱性物质—腐殖酸、 黏土矿物—生物炭 | Cd、Pb、Cu、Zn | 调节土壤pH形成沉淀,吸附络合重金属,从而降低重金属 的生物有效性[ |
有机-有机 复合 | 生物炭—有机肥、生物炭—动物粪便 | Cd、Pb | 重金属发生吸附、离子交换、络合等反应来钝化土壤中的 重金属[ |
重金属类型 | 钝化材料 | 钝化机理 |
---|---|---|
Cd | 石灰、粉煤灰、赤泥、电解锰废渣、氧化钙、硫酸铵、过磷酸钙 | 通过提高土壤pH、化学沉淀、螯合、吸附作用作用固定酸性土壤中Cd[ |
Pb | 磷酸盐、腐殖酸、磷矿粉 | 通过提高土壤pH形成沉淀,从而降低Pb的生物有效性[ |
As | 铁盐、亚铁盐、氧化铁 | 调节土壤pH,与As反应生产沉淀,络合等来钝化土壤中的As[ |
重金属类型 | 钝化材料 | 钝化机理 |
---|---|---|
Cd | 石灰、粉煤灰、赤泥、电解锰废渣、氧化钙、硫酸铵、过磷酸钙 | 通过提高土壤pH、化学沉淀、螯合、吸附作用作用固定酸性土壤中Cd[ |
Pb | 磷酸盐、腐殖酸、磷矿粉 | 通过提高土壤pH形成沉淀,从而降低Pb的生物有效性[ |
As | 铁盐、亚铁盐、氧化铁 | 调节土壤pH,与As反应生产沉淀,络合等来钝化土壤中的As[ |
[1] |
Shahid M, Xiong T, Masood N, et al. Influence of plant species and phosphorus amendments on metal speciation and bioavailability in a smelter impacted soil: acase study of food-chain contamination[J]. Journal of Soils and Sediments, 2014,14(4):655-665.
doi: 10.1007/s11368-013-0745-8 URL |
[2] | 邹雪艳, 李小红, 赵彦保, 等. 化学钝化法修复重金属污染土壤研究进展[J]. 化学研究, 2018,29(6):560-569. |
[3] | 赵彦锋, 郭恒亮, 孙志英, 等. 基于土壤学知识的主成分分析判断土壤重金属来源[J]. 地理科学, 2008(1):45-50. |
[4] | 陈燕芳. 我国城市土壤重金属污染及其治理研究进展综述[J]. 中国人口·资源与环境, 2011,21(S1):536-539. |
[5] | 杨忠平, 卢文喜, 刘新荣, 等. 长春市城区表层土壤重金属污染来源解析[J]. 城市环境与城市生态, 2009,22(5):29-33. |
[6] | 安志装, 王校常, 施卫明, 等. 重金属与营养元素交互作用的植物生理效应[J]. 土壤与环境, 2002(4):392-396. |
[7] | 顾继光, 林秋奇, 胡韧, 等. 土壤—植物系统中重金属污染的治理途径及其研究展望[J]. 土壤通报, 2005(1):128-133. |
[8] | 姚智卿. 铅对人体健康的危害[J]. 微量元素与健康研究, 2011,28(5):67-68. |
[9] |
Nica D V, Bura M, Gergen I, et al. Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain[J]. Chemistry Central Journal, 2012,6(1):55-69.
doi: 10.1186/1752-153X-6-55 URL pmid: 22703871 |
[10] | 牛凯莉, 刘向昭, 朱天明, 等. 重金属对粮食的危害及防治[J]. 现代食品, 2018(5):12-13,16. |
[11] | Gupta D K, Sandalio L M. Metal toxicity in plants: Perception, signaling and remediation[M]. Berlin Heidelberg:Springer, 2012. |
[12] | 苗亚琼, 林清. 广西土壤重金属镉污染及对人体健康的危害[J]. 环境与可持续发展, 2016,41(5):171-173. |
[13] | 杨蕾. 我国土壤重金属污染的来源、现状、特点及治理技术[J]. 中国资源综合利用, 2018,36(2):151-153. |
[14] | 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013,32(3):409-417. |
[15] | Muthukrishnan S, Dhinakaran D I, Kumar S S, et al. Accumulation of heavy metals in agricultural soilsample in Viswanatham,Sivakasi[J]. American-EurasianJournal of Agricultural & Environmental Sciences, 2014,14(12):1382-1385. |
[16] |
Xie H T, Li J, Zhang C Z, et al. Assessment of heavy metal contents in surface soil in the Lhasa-Shigatse-Nam Co Area of the Tibetan Plateau,China[J]. Bulletin of Environmental Contamination and Toxicology, 2014,93(2):192-198.
doi: 10.1007/s00128-014-1288-4 URL pmid: 24816867 |
[17] | 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5):10-11. |
[18] | 王宇函, 吕波, 张林, 等. 不同土壤改良剂对酸性铝富集红壤毒性缓解效应的差异[J]. 华中农业大学学报, 2019,38(2):73-80. |
[19] |
Mondal S C, Sarma B, Farooq M, et al. Cadmium bioavailability in acidic soils under bean cultivation: role of soil additives[J]. International Journal of Environmental Science and Technology, 2019: 1-8.
doi: 10.1007/s13762-020-02753-6 URL pmid: 32421070 |
[20] |
Guo F, Ding C, Zhou Z, et al. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification[J]. Ecotoxicology and environmental safety, 2018,161:164-172.
URL pmid: 29879577 |
[21] | 邹富桢, 龙新宪, 余光伟, 等. 混合改良剂钝化修复酸性多金属污染土壤的效应:基于重金属形态和植物有效性的评价[J]. 农业环境科学学报, 2017,36(9):1787-1795. |
[22] | 瞿飞, 范成五, 刘桂华, 等. 钝化剂修复重金属污染土壤研究进展[J]. 山西农业科学, 2017,45(9):1561-1565,1576. |
[23] | 朱凰榕, 赵秋香, 倪卫东, 等. 巯基-蒙脱石复合材料对不同程度Cd污染农田土壤修复研究[J]. 生态环境学报, 2018,27(1):174-181. |
[24] | 刘茵. Glomusintraradices对黑麦草生长和富集镉的影响[J]. 湖北农业科学, 2011,50(12):2409-2412. |
[25] |
Komareh M, Vanek A, Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides-A review[J]. Environmental Pollution, 2013,172:9-22.
doi: 10.1016/j.envpol.2012.07.045 URL |
[26] |
Li X G, He C, Bai Y, et al. Stabilization/solidification on chromium (III) wastes by C(3)A and C(3) A hydrated matrix[J]. Journal of Hazardous Materials, 2014,268:61-67.
doi: 10.1016/j.jhazmat.2014.01.002 URL pmid: 24468527 |
[27] | 施培俊, 王冠华, 陈亚华, 等. 原位化学钝化技术在重金属污染土壤修复中的研究进展[J]. 环境科学导刊, 2016,35(S1):121-124. |
[28] |
Hale B, Evans L, Lambert R. Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field contaminatedandagedsoils[J]. Journal of Hazardous Materials, 2012,199/200:119-127.
doi: 10.1016/j.jhazmat.2011.10.065 URL |
[29] |
Malandrino M, Abollino O, Buoso S, et al. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite[J]. Chemosphere, 2011,82(2):169-178.
URL pmid: 21055788 |
[30] | 徐粲然, 卢滇楠, 刘永民. 生物钝化修复镉污染土壤研究进展[J]. 化工进展, 2014,33(8):2174-2179. |
[31] | 康宏宇, 林健, 张乃明, 等. 不同钝化材料对重金属污染土壤的钝化效果研究[J]. 中国农学通报, 2015,31(35):176-180. |
[32] | 袁兴超, 李博, 朱仁凤, 等. 不同钝化剂对铅锌矿区周边农田镉铅污染钝化修复研究[J]. 农业环境科学学报, 2019,38(4):807-817. |
[33] |
Mallampati S R, Mitoma Y, Okuda T, et al. Enhanced heavy metalimmobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture[J]. Chemosphere, 2012,89:717-723.
doi: 10.1016/j.chemosphere.2012.06.030 URL |
[34] |
Liang Y, Cao X D, Zhao L, et al. Biochar and phosphate-induced immobilization of heavy metals in contaminatedsoil and waterimplicationon simultaneous remediationof contaminated soil and groundwater[J]. Environmental Science and Pollution Research International, 2014,21(6):4665.
doi: 10.1007/s11356-013-2423-1 URL pmid: 24352548 |
[35] | Basta N T, Mcgowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter contaminated soil[J]. Environmental pollution, 2014(127):73-82. |
[36] | 陈杰, 宋靖珂, 张晶, 等. 不同钝化剂对铜污染土壤原位钝化修复[J]. 土壤, 2016,48(4):742-747. |
[37] | 顾巧浓, 金红丽, 周玲玲. 钝化剂对土壤重金属污染修复的实验研究[J]. 能源与节能, 2015(11):105-106,155. |
[38] |
Gupta S S, Bhattacharyya K G. Adsorption of heavy metals on kaolinite and montmorillonite: a review[J]. Physical Chemistry Chemical Physics, 2012,14(19):6698-6723.
doi: 10.1039/c2cp40093f URL |
[39] | Brown L, Seaton K, Mohseni R. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand[J]. Joumal of Hazardous Materials, 2013,261(20):181-187. |
[40] |
Liang X, Yi X, Xu Y, et al. Two-year stability of immobilization effect of sepiolite on Cd contaminants in paddy soil[J]. Environmental Science & Pollution Research International, 2016(13):12922.
URL pmid: 26993515 |
[41] |
Abad-Valle P, Álvarez-Ayuso E, Murciego A, et al. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil[J]. Geoderma, 2016,280:57-66.
doi: 10.1016/j.geoderma.2016.06.015 URL |
[42] | 李雪婷, 黄显怀, 周超, 等. 改性黏土矿物修复重金属污染底泥的稳定化试验研究[J]. 环境工程, 2015,33(9):158-163. |
[43] |
Filho M R R, Siqueira J O, Vangronsveld J, et al. Inorganic materials as ameliorants for soil remediation of metal toxicity to wild mustard (Sinapis arvensis L.)[J]. International Journal of Phytoremediation, 2011,13(5):498-512.
doi: 10.1080/15226511003753938 URL |
[44] | 李季, 黄益宗, 胡莹, 等. 改良剂对土壤Cu形态转化及其生物可给性的影响[J]. 环境工程学报, 2016,10(4):2057-2063. |
[45] |
Parkj H, Lamb D, Paneerselvam P, et al. Role of organicamendments on enhanced bioremediation of heavy metal(loid) ontaminated soils[J]. Journal of Hazardous Materials, 2011,185:549-574.
URL pmid: 20974519 |
[46] |
Chen M, Xu P, Zeng G, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons,petroleum,pesticides,chlorophenols and heavy metals by composting: applications,microbes and future research needs[J]. Biotechnology Advances, 2015,33(6):745-755.
doi: 10.1016/j.biotechadv.2015.05.003 URL |
[47] | 施培俊, 王冠华, 吴迪, 等. 几种有机、无机钝化剂对铜污染土壤的钝化效果研究[J]. 环境工程, 2016,34(6):173-176. |
[48] |
Liu K, Lv J, He W, et al. Major factors influencing cadmium uptake from the soil into wheat plants[J]. Ecotoxicology and Environmental Safety, 2015,113:207-213.
doi: 10.1016/j.ecoenv.2014.12.005 URL pmid: 25499054 |
[49] |
Chen H S, Yuan H Q, Liu L N, et al. Poultry manure compost alleviates the phytotoxicity of soil cadmium: influence on growth of pakchoi (Brassica chinensis L.)[J]. Pedosphere, 2010,20(1):63-70.
doi: 10.1016/S1002-0160(09)60283-6 URL |
[50] | 姜志翔, 郑浩, 李锋民, 等. 生物炭技术缓解我国温室效应潜力初步评估[J]. 环境科学, 2013,34(6):2486-2492. |
[51] | 唐行灿, 张民. 生物炭修复污染土壤的研究进展[J]. 环境科学导刊, 2014,33(1):17-26. |
[52] | 夏鹏, 王学江, 张晶, 等. 生物质炭对单一与复合污染土壤中铜、铅、铬的钝化作用[J]. 土壤通报, 2016,47(1):192-197. |
[53] |
Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biocharapplication to a Colombian savanna oxisol[J]. Plant and Soil, 2010,333(1/2):117-128.
doi: 10.1007/s11104-010-0327-0 URL |
[54] | 李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报, 2014,23(4):721-728. |
[55] | 郭利敏, 艾绍英, 唐明灯, 等. 不同改良剂对镉污染土壤中小白菜吸收镉的影响[J]. 中国生态农业学报, 2010,18(3):654-658. |
[56] | 梁学峰, 徐应明, 王林, 等. 天然黏土联合磷肥对农田土壤镉铅污染原位钝化修复效应研究[J]. 环境科学学报, 2011,31(5):1011-1018. |
[57] | 周斌, 易新建, 邵煜锟, 等. 工业复合钝化剂对镉污染水稻土的修复效应及其机理[J]. 湖南农业科学, 2015(7):30-33. |
[58] |
Hu Z Q, Yang X H, Zhang Y C. Clay minerals as a feasible additive to stabilize cadmium in contaminated soils[J]. Key Engineering Materials, 2007, 336-338(2):1906.
doi: 10.4028/www.scientific.net/KEM.336-338 URL |
[59] | 丁凌云, 蓝崇钰, 林建平, 等. 不同改良剂对重金属污染农田水稻产量和重金属吸收的影响[J]. 生态环境, 2006(6):1204-1208. |
[60] | 史力争, 陈惠康, 吴川, 等. 赤泥及其复合钝化剂对土壤铅、镉和砷的稳定效应[J]. 中国科学院大学学报, 2018,35(5):617-626. |
[61] | 王林, 徐应明, 孙国红, 等. 海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J]. 生态环境学报, 2012,21(2):314-320. |
[62] | Iksong Ham, 胡林飞, 吴建军, 等. 泥炭对土壤镉有效性及镉形态变化的影响[J]. 土壤通报, 2009,40(6):1436-1441. |
[63] |
Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth[J]. Chemosphere, 2005,60(3):365.
doi: 10.1016/j.chemosphere.2004.11.098 URL pmid: 15924955 |
[64] | 吴烈善, 曾东梅, 莫小荣, 等. 不同钝化剂对重金属污染土壤稳定化效应的研究[J]. 环境科学, 2015,36(1):309-313. |
[65] |
Ok Y S, Kim S C, Kim D K, et al. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea[J]. Environmental Geochemistry and Health, 2011,33(1):23-30.
doi: 10.1007/s10653-010-9311-0 URL pmid: 20449635 |
[66] | 杜彩艳, 木霖, 王红华, 等. 不同钝化剂及其组合对玉米(Zea mays)生长和吸收Pb Cd As Zn影响研究[J]. 农业环境科学学报, 2016,35(8):1515-1522. |
[67] | 刘梦丽, 蒋明, 李博, 等. 农田土壤镉污染钝化修复研究进展[J]. 云南农业大学学报:自然科学, 2018,33(2):350-359. |
[68] |
Wu F L, Lin D Y, Su D C. The effect of planting oil seed rape and com-post application on heavy metal forms in soil and Cd and Pb uptake in rice[J]. Agricultural Sciences in China, 2011,10(2):267.
doi: 10.1016/S1671-2927(11)60004-7 URL |
[69] | 王期凯, 郭文娟, 孙国红, 等. 生物炭与肥料复配对土壤重金属镉污染钝化修复效应[J]. 农业资源与环境学报, 2015,32(6):583-589. |
[70] | 王林, 徐应明, 梁学峰, 等. 生物炭和鸡粪对镉低积累油菜吸收镉的影响[J]. 中国环境科学, 2014,34(11):2851-2858. |
[71] | 王丹丹, 林静雯, 丁海涛, 等. 牛粪生物炭对重金属镉污染土壤的钝化修复研究[J]. 环境工程, 2016,34(12):183-187. |
[72] | 刘领, 悦飞雪, 李继伟, 等. 秸秆生物炭和鸡粪对铅胁迫下玉米生长和生理特性的影响[J]. 水土保持学报, 2018,32(4):262-267. |
[73] | 悦飞雪, 李继伟, 王艳芳, 等. 施用秸秆生物炭和鸡粪对镉胁迫下玉米生长及镉吸收的影响[J]. 农业环境科学学报, 2018,37(10):2118-2126. |
[74] |
Zeng G M, Wu H P, Liang J, et al. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability,mobility and ecological risk in wetland soil[J]. RSC Advances, 2015,5(44):34541.
doi: 10.1039/C5RA04834F URL |
[75] |
Chen H S, Huang Q Y, Liu L N, et al. Poultry manure compost alleviates the phytotoxicity of soil cadmium: influence on growth of pakchoi (Brassica chinensis L.)[J]. Pedosphere, 2010,20(1):63.
doi: 10.1016/S1002-0160(09)60283-6 URL |
[76] | 张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应[J]. 生态学杂志, 2019,38(6):1900-1908. |
[77] | 蔡轩, 龙新宪, 种云霄, 等. 无机-有机混合改良剂对酸性重金属复合污染土壤的修复效应[J]. 环境科学学报, 2015,35(12):3991-4002. |
[78] | 郭荣荣, 黄凡, 易晓媚, 等. 混合无机改良剂对酸性多重金属污染土壤的改良效应[J]. 农业环境科学学报, 2015,34(4):686-694. |
[79] | 李清飞, 王世香, 邹法俊. 有机肥对Cd、Pb复合污染酸性土壤生物特性和油菜生长的影响[J]. 河南农业科学, 2017,46(3):71-74+106. |
[80] | 于天一, 孙秀山, 石程仁. 土壤酸化危害及防治技术研究进展[J]. 生态学杂志, 2014,33(11):3137-3143. |
[81] |
Boussen S, Soubrando M, Bril H, et al. Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils[J]. Geoderma, 2013,192(1):227-236.
doi: 10.1016/j.geoderma.2012.08.029 URL |
[82] | Ye X, Li H, Ma Y, et al. The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties[J]. Journal of Soils & Sediments, 2014,14(8):1407-1416. |
[83] |
Ashrafzadeh S, Leung D M. Development of cadmium-safe crop cultivars: a mini review[J]. Journal of Crop Improvement, 2016,30(2):107.
doi: 10.1080/15427528.2015.1134743 URL |
[84] | 李明, 陈宏坪, 王子萱, 等. 石灰钝化法原位修复酸性镉污染菜地土壤[J]. 环境工程学报, 2018,12(10):2864-2873. |
[85] | 刘丽, 吴燕明, 周航, 等. 大田条件下施加组配改良剂对蔬菜吸收重金属的影响[J]. 环境工程学报, 2015,9(3):1489-1495. |
[86] | 韩雷, 陈娟, 杜平, 等. 不同钝化剂对Cd污染农田土壤生态安全的影响[J]. 环境科学研究, 2018,31(7):1289-1295. |
[87] | 曹英兰, 陈丽娜, 张金丽, 等. 牡蛎壳粉对酸性土壤的修复及其对镉的钝化作用研究[J]. 环境科学与技术, 2016,39(1):178-182. |
[88] | 黄安香, 杨守禄, 杨定云, 等. 竹笋地土壤剖面的铅和镉的积累迁移及潜在生态风险评价[J]. 土壤通报, 2018,49(5):1225-1232. |
[89] | 吕莹, 李佳, 叶恒朋, 等. 无机改良剂对酸性重金属污染土壤的修复效果[J]. 环境科学与技术, 2018,41(10):1-12. |
[90] | 朱维, 周航, 吴玉俊, 等. 组配改良剂对稻田土壤中镉铅形态及糙米中镉铅累积的影响[J]. 环境科学学报, 2015,35(11):3688-3694. |
[91] | 李雅贞, 罗琳, 晏洪铃, 等. 含磷材料对矿区铅镉污染土壤重金属形态转化的影响[J]. 环境工程学报, 2015,9(5):2469-2472. |
[92] | 邢金峰, 仓龙, 葛礼强, 等. 纳米羟基磷灰石钝化修复重金属污染土壤的稳定性研究[J]. 农业环境科学学报, 2016,35(7):1271-1277. |
[93] |
Shahid M, Xiong T, Masood N, et al. Influence of plant species and phosphorus amendments on metal speciation and bioavailability in a smelter impacted soil: a case study of food-chain contamination[J]. Journal of Soils and Sediments, 2014,14(4):655-665.
doi: 10.1007/s11368-013-0745-8 URL |
[94] | 高跃, 韩晓凯, 李艳辉, 等. 腐殖酸对土壤铅赋存形态的影响[J]. 生态环境学报, 2008,17(3):1053-1057. |
[95] | 钟振宇, 赵庆圆, 陈灿, 等. 腐殖酸和含磷物质对模拟铅污染农田土壤的钝化效应[J]. 环境化学, 2018,37(6):1327-1336. |
[96] | 袁启慧, 包立, 张乃明. 钝化剂种类和粒径对复合污染土壤镉铅有效态的影响[J]. 农业资源与环境学报, 2019,36(2):192-197. |
[97] | 鲁长娟, 张菊, 董杰, 等. 聊城市城区水岸带土壤Hg,As含量分布特征及污染评价[J]. 河南师范大学学报:自然科学版, 2017,45(2):43-47. |
[98] | 徐蒙蒙, 涂春艳, 黄河, 等. 淹水条件下蚕沙复配材料对酸性水稻土中镉铅钝化的影响[J]. 环境工程学报, 2018,12(4):1182-1189. |
[99] | 郝晓伟, 黄益宗, 崔岩山, 等. 赤泥和骨炭对污染土壤As化学形态及其生物可给性的影响[J]. 环境化学, 2010,29(3):383-387. |
[100] |
Polizzotto M L, Harvey C F, Li G C, et al. Solid-phases and desorption processes of arsenic within Bangladesh sediments[J]. Chemical Geology, 2006,228(1/2/3):97-111.
doi: 10.1016/j.chemgeo.2005.11.026 URL |
[101] |
Xenidis A, Stouraiti C, Papassiopi N. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron[J]. Journal of Hazardous Materials, 2010,177(1/2/3):929-937.
doi: 10.1016/j.jhazmat.2010.01.006 URL |
[102] |
Hartley W, Edwards R, Lepp N W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short-and long-term leaching tests[J]. Environmental Pollution, 2004,131(3):495-504.
doi: 10.1016/j.envpol.2004.02.017 URL pmid: 15261413 |
[103] | 向猛, 黄益宗, 蔡立群, 等. 改良剂对土壤As钝化作用及生物可给性的影响[J]. 环境化学, 2016,35(2):317-322. |
[104] | 吴宝麟, 杨志辉, 柴立元, 等. 磷基及铁基钝化剂对Pb、Cd、As复合污染土壤的修复效果及其工艺条件优化[J]. 安全与环境学报, 2015,15(5):314-319. |
[105] | 卢美献, 李方圆, 张超兰, 等. 不同固定剂对土壤中镉砷钝化修复效果研究[J]. 广西大学学报:自然科学版, 2016,41(5):1667-1675. |
[106] |
Wenzel W W, Kirchbaumer N, Prohaska T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001,436(2):309-323.
doi: 10.1016/S0003-2670(01)00924-2 URL |
[107] | 郭娟, 罗小丽, 姚爱军, 等. 模拟酸雨条件下铁硅材料和生物炭对土壤镉砷形态及生物有效性的影响[J]. 农业环境科学学报, 2018,37(7):1495-1502. |
[1] | 李晓宇. 苇基杏鲍菇栽培及产品分析[J]. 中国农学通报, 2023, 39(1): 51-55. |
[2] | 崔莹莹, 周波, 陈义勇, 刘嘉裕, 黎健龙, 唐颢, 唐劲驰. 广东茶区土壤肥力时空变化分析与综合评价[J]. 中国农学通报, 2023, 39(1): 85-95. |
[3] | 孙树晴, 丁炜, 孙瑞, 张希财, 兰国玉, 陈伟, 杨川, 吴志祥. 不同林龄橡胶林土壤细菌群落组成及多样性研究[J]. 中国农学通报, 2022, 38(9): 93-100. |
[4] | 洪慈清, 桂芳泽, 陈芳容, 方云, 游雨欣, 关雄, 潘晓鸿. 茶渣制备的生物质炭对重金属镍的吸附研究[J]. 中国农学通报, 2022, 38(9): 109-114. |
[5] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[6] | 曾婕, 余浪, 达布希拉图, 李云驹. 磷基土壤调理剂在低磷红壤上对小白菜生长的影响[J]. 中国农学通报, 2022, 38(9): 81-87. |
[7] | 黄浩, 谢晋, 袁文彬, 王初亮, 陈坤华, 曾繁东, 梁增发, 苏诏, 王维. 不同有机物料对烤烟根系特征及氮磷钾积累量的影响[J]. 中国农学通报, 2022, 38(8): 51-57. |
[8] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[9] | 卢丽兰, 王玉萍, 尹欣幸, 黄英凯, 范海阔. 海南省水果型椰子园土壤养分调查与评价[J]. 中国农学通报, 2022, 38(8): 72-80. |
[10] | 王丽娜, 杨瑛, 杜苏. 生物炭施入对盐碱土壤影响的研究现状[J]. 中国农学通报, 2022, 38(8): 81-87. |
[11] | 赵双梅, 刘宪斌, 李红梅, 董文彩, 沈健萍, 包金美, 梁芳, 鲁美. 云南哀牢山湿性常绿阔叶林土壤碳分布特征[J]. 中国农学通报, 2022, 38(8): 88-95. |
[12] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[13] | 张梦佳, 文方芳, 张雪莲, 赵青春, 郭建明, 廖洪, 刘自飞, 朱文, 韩宝, 葛瑶科, 廖上强, 卢静. 田块尺度设施菜田土壤健康评价方法的初步构建与应用[J]. 中国农学通报, 2022, 38(7): 74-79. |
[14] | 陈慧, 周晓月, 谭诚, 张永春, 汪吉东, 马洪波. 紫云英还田对土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(7): 80-85. |
[15] | 赵越, 张晓艳, 曹焜, 韩承伟, 姜颖, 边境, 王晓楠, 孙宇峰. 工业大麻抗逆生理及分子机制研究进展[J]. 中国农学通报, 2022, 38(6): 102-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||