[1] |
马文奎. 芦竹的栽培和综合利用[J]. 中国野生植物资源, 2006, 25(2):64-65.
|
[2] |
甄国庆, 张庆涛, 陈凯, 等. 芦竹引种及栽培技术[J]. 林业实用技术, 2005(9):36-37.
|
[3] |
欧阳富龙, 陈福, 彭媛媛, 等. 不同生育期芦竹的营养价值及体外产气特征[J]. 动物营养学报, 2017, 29(9):3385-3391.
|
[4] |
李琳, 杨培龙, 李秀梅, 等. 芦竹不同高度、不同部位及不同青贮时间的营养价值比较[J]. 草地学报, 2020, 28(4):1168-1172.
doi: 10.11733/j.issn.1007-0435.2020.04.037
|
[5] |
柳珊, 张紫嘉, 郭建斌, 等. 芦竹青贮特性及其对厌氧消化性能的影响研究[J]. 农业机械学报, 2020, 51(1):421-428.
|
[6] |
曾鹏, 郭朝晖, 肖细元, 等. 芦竹和木本植物间种修复重金属污染土壤[J]. 环境工程, 2018, 39(11):5207-5216.
|
[7] |
徐智, 郭朝晖, 韩自玉, 等. 芦竹水热炭的制备及重金属分离机制研究[J]. 环境工程, 2018, 36(8):118-123.
|
[8] |
王朋, 张建良, 王广伟, 等. 热解制备芦竹半焦基础性能分析[J]. 中国冶金, 2019, 29(2):12-16.
|
[9] |
ARITE T, UMEHARA M, ISHIKAWA S, et al. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers[J]. Plant and cell physiology, 2009, 50(8):1416-24.
doi: 10.1093/pcp/pcp091
pmid: 19542179
|
[10] |
YAO R F, WANG L, L Y W, et al. Rice DWARF14 acts as an unconventional hormone receptor for strigolactone[J]. Journal of experimental botany, 2018, 69(9):2355-2365.
doi: 10.1093/jxb/ery014
pmid: 29365172
|
[11] |
LIU R F, HOU J, LI H F, et al. Association of TaD14-4D, a gene involved in strigolactone signaling, with yield contributing traits in wheat[J]. International journal of molecular sciences, 2021, 22(7):3748.
|
[12] |
KYOZUKA J, NOMURA T, SHIMAMURA M. Origins and evolution of the dual functions of strigolactones as rhizosphere signaling molecules and plant hormones[J]. Current opinion in plant biology, 2022, 65(1):102154.
|
[13] |
YAO R F, MING Z H, YAN L M, et al. DWARF14 is a non-canonical hormone receptor for strigolactone[J]. Nature, 2016, 536(7617):19073.
|
[14] |
JIANG L, LIU X, XIONG G S, et al. DWARF 53 acts as a repressor of strigolactone signaling in rice[J]. Nature, 2013, 504(7480):401-405.
|
[15] |
ZHOU F, LIN Q B, ZHU L H, et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signaling[J]. Nature, 2013, 504(7480):406-410.
|
[16] |
TAL L, PALAYAM M, RON M, et al. A conformational switch in the SCF-D3/MAX2 ubiquitin ligase facilitates strigolactonesignalling[J]. Nature plants, 2022, 8(5):1-13.
|
[17] |
姚瑞枫, 娄智勇, 谢道昕. 植物分枝的奥秘——植物分枝激素独脚金内酯的感知机制[J]. 科技导报, 2018, 36(7):20-25.
doi: 10.3981/j.issn.1000-7857.2018.07.003
|
[18] |
TSUCHIYA Y, YOSHIMURA M, SATO Y, et al. Probing strigolactone receptors in Striga hermonthica with fluorescence[J]. Science, 2015, 349(6250):864-868.
|
[19] |
CHEN Y C, KUANG Y, SHI L Y, et al. Synthesis and evaluation of new halogenated GR24 analogs as germination promotors for Orobanchecumana[J]. Frontiers in plant science, 2021,12:725949.
|
[20] |
WANG L, LI J. Branching in rice[J]. Current opinion in plant biology, 2011, 14(1):94-99.
doi: 10.1016/j.pbi.2010.11.002
pmid: 21144796
|
[21] |
MARZEC M, GRUSZKA D, TYLEC P, et al. Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare[J]. Physiologia plantarum, 2016, 158(3):341-355.
|
[22] |
HU A Q, ZHAO Q Q, CHEN L, et al. Identification of conserved and divergent strigolactone receptors in sugarcane reveals a key residue crucial for plant branching control[J]. Frontiers in plant science, 2021, 12:747160.
|
[23] |
MASHIGUCHI K, SETO Y, YAMAGUCHI S. Strigolactone biosynthesis, transport and perception[J]. The plant journal, 2021, 105(10):335-350.
|
[24] |
KYOZUKA J, NOMURA T, SHIMAMURA M. Origins and evolution of the dual functions of strigolactones as rhizosphere signaling moleculesand plant hormones[J]. Current opinion in plant biology, 2022, 65:102154.
|