[1] |
师高民. 五谷,起源考之三;大豆和玉米[J]. 中国粮食经济, 2021, 1:76.
|
[2] |
WAHAB S, MUZAMMIL K, NASIR N, et al. Advancement and new trends in analysis of pesticide residues in food: a comprehensive review[J]. Plants, 2022, 11(9):1106.
|
[3] |
CHANDRASEKARAN M, PARAMASIVAN M. Plant growth-promoting bacterial (PGPB) mediated degradation of hazardous pesticides: a review[J]. International biodeterioration & biodegradation, 2024, 190:105769.
|
[4] |
KAUR R, SINGH D, KUMARI A, et al. Pesticide residues degradation strategies in soil and water: a review[J]. International journal of environmental science and technology, 2021, 20:1-24.
|
[5] |
GAANGOLA S, SHARMA A, JOSHI S, et al. Novel mechanism and degradation kinetics of pesticides mixture using Bacillus sp. strain 3C in contaminated sites[J]. Pesticide biochemistry and physiology, 2022, 181:104996.
|
[6] |
ROY T, BANDOPADHYAY A, PAUL C, et al. Role of plasmid in pesticide degradation and metal tolerance in two plant growth-promoting rhizobacteria Bacillus cereus (NCIM 5557) and Bacillus safensis (NCIM 5558)[J]. Current microbiology, 2022, 79(4):106.
|
[7] |
OMEIRI M, KHNAYZER R, YUESF H, et al. Bacillus spp. isolated from soil in lebanon can simultaneously degrade methomyl in contaminated soils and enhance plant growth[J]. Biocatalysis and agricultural biotechnology, 2022, 39:102280.
|
[8] |
AHMAD S, PINTO A P, HAI F I, et al. Dimethoate residues in Pakistan and mitigation strategies through microbial degradation: a review[J]. Environmental science and pollution research, 2022, 29(34):51367-51383.
|
[9] |
GILANI R A, RAFIQUE M, REHMAN A, et al. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas[J]. Journal of basic microbiology, 2016, 56(2):105-119.
|
[10] |
GONG T, XU X, DANG Y, et al. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates[J]. Science of the total environment, 2018, 628:1258-1265.
|
[11] |
ZHANG Q, LI S, MA C, et al. Simultaneous biodegradation of bifenthrin and chlorpyrifos by Pseudomonas sp. CB2[J]. Journal of environmental science and health, part b, 2018, 53(5):304-312.
|
[12] |
JARIYAL M, GUPTA V K, MANDAL K, et al. Brevibacterium frigoritolerans as a novel organism for the bioremediation of phorate[J]. Bulletin of environmental contamination and toxicology, 2015, 95:680-686.
|
[13] |
CHEN S, DONG Y H, CHANG C, et al. Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway[J]. Bioresource technology, 2013, 132:16-23.
|
[14] |
XU Z, LI B, JIA Y, et al. Biodegradation of imazethapyr by bacterial strain IM9601 isolated from agricultural soil[J]. Current microbiology, 2024, 81(1):33.
|
[15] |
ELSHIKH M S, ALARJANI K M, HUESSIEN D S, et al. Enhanced biodegradation of chlorpyrifos by Bacillus cereus CP6 and Klebsiella pneumoniae CP19 from municipal waste water[J]. Environmental research, 2022, 205:112438.
|
[16] |
杨昊博, 接伟光, 林厚泽, 等. 微生物降解大豆农药残留研究现状[J]. 粮食与油脂, 2023, 36(5):13-18.
|
[17] |
SHARMA R, SAROOP S. Role of microbes in pesticide bioremediation: recent advances and biotechnological implications[J]. Pesticides in a changing environment, 2024, 350:223-250.
|
[18] |
何霞, 白红娟. 微生物降解有机磷农药残留的研究进展[J]. 山西化工, 2011, 31(4):27-29.
|
[19] |
BOUTEH E, AHMADI N, ABBASI M, et al. Biodegradation of organophosphorus pesticides in moving bed biofilm reactors: Analysis of microbial community and biodegradation pathways[J]. Journal of hazardous materials, 2021, 408:124950.
|
[20] |
BIBI H, MAHMOOD S, KHALID A, et al. Isolation of bacterial strains for efficient degradation of organophosphate pesticide[J]. Soil & environment, 2023, 42(1):89.
|
[21] |
YASMIN A, AMBREEN S, SHABIR S. Biotransformation of dimethoate into novel metabolites by bacterial isolate Pseudomonas kilonensis MB490[J]. Journal of environmental science and health, part b., 2022, 57(1):13-22.
|
[22] |
WU X, CHEN W J, LIN Z, et al. Rapid biodegradation of the organophosphorus insecticide acephate by a novel strain Burkholderia sp. A11 and its impact on the structure of the indigenous microbial community[J]. Journal of agricultural and food chemistry, 2023, 71(13):5261-5274.
|
[23] |
MUSTAPHA M U, HALIMOON N, JOHAR W L W, et al. An overview on biodegradation of carbamate pesticides by soil bacteria[J]. Pertanika journal of science & technology, 2019, 27(2):547-563.
|
[24] |
MISHRA S, PANG S, ZHANG W, et al. Insights into the microbial degradation and biochemical mechanisms of carbamates[J]. Chemosphere, 2021, 279:130500.
|
[25] |
MISHAR S, ZHANG W, LIN Z, et al. Carbofuran toxicity and its microbial degradation in contaminated environments[J]. Chemosphere, 2020, 259:127419.
|
[26] |
MALHOTRA H, KAUR S, PHALE P S. Conserved metabolic and evolutionary themes in microbial degradation of carbamate pesticides[J]. Frontiers in microbiology, 2021, 12:648868.
|
[27] |
CHANIKA E, GEORGIADOU D, SOUERRF E, et al. Isolation of soil bacteria able to hydrolyze both organophosphate and carbamate pesticides[J]. Bioresource technology, 2011, 102(3):3184-3192.
doi: 10.1016/j.biortech.2010.10.145
pmid: 21112209
|
[28] |
BIROLLI W G, ALVARENGA N, SELEGHIM M H R, et al. Biodegradation of the pyrethroid pesticide esfenvalerate by marine-derived fungi[J]. Marine biotechnology, 2016, 18:511-520.
doi: 10.1007/s10126-016-9710-z
pmid: 27381569
|
[29] |
GAJENDIRAN A, ABRAHAM J. An overview of pyrethroid insecticides[J]. Frontiers in biology, 2018, 13:79-90.
|
[30] |
CHEN S H, ZHAN H. Biodegradation of synthetic pyrethroid insecticides[J]. Microbial metabolism of xenobiotic compounds, 2019, DOI: 10.1007/978-981-13-7462-3_11.
|
[31] |
ZHANG M, YANG K, YANG L, et al. A novel cold-adapted pyrethroid-degrading esterase from Bacillus subtilis J6 and its application for pyrethroid-residual alleviation in food matrix[J]. Journal of hazardous materials, 2024, 463:132847.
|
[32] |
HUANG Y, CHEN S F, CHEN W J, et al. Efficient biodegradation of multiple pyrethroid pesticides by Rhodococcus pyridinivorans strain Y6 and its degradation mechanism[J]. Chemical engineering journal, 2023, 469:143863.
|
[33] |
PANG S, LIN Z, ZHANG W, et al. Insights into the microbial degradation and biochemical mechanisms of neonicotinoids[J]. Front microbiol., 2020, 11:868.
doi: 10.3389/fmicb.2020.00868
pmid: 32508767
|
[34] |
JESCHKE P, NAUEN R, SCHINDLER M, et al. Overview of the status and global strategy for neonicotinoids[J]. Agric food chem., 2011, 59:2897-2908.
|
[35] |
ZHANG X, HUANG Y, CHEN W J, et al. Environmental occurrence, toxicity concerns and biodegradation of neonicotinoid insecticides[J]. Environmental research, 2023, 218:114953.
|
[36] |
HUSSAIN S, HARYLEY C J, SHETTIGAR M, et al. Bacterial biodegradation of neonicotinoid pesticides in soil and water systems[J]. Microbiology letters, 2016, 363(23):252.
|
[37] |
WANG G, YUE W, LIU Y, et al. Biodegradation of the neonicotinoid insecticide acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil[J]. Bioresource technology, 2013, 138:359-368.
|
[38] |
林厚泽, 接伟光, 杨冬莹. 大豆农药残留及降解方法研究现状[J]. 粮食与油脂, 2022, 35(6):8-12.
|
[39] |
LIN Z, PANG S, ZHOU Z, et al. Current insights into the microbial degradation for butachlor: strains, metabolic pathways, and molecular mechanisms[J]. Applied microbiology and biotechnology, 2021, 105(11):4369-4381.
|
[40] |
SALAM M T B, MAHMOOD A, ASGHAR W, et al. Phytomicrobiomes: a potential approach for sustainable pesticide biodegradation[J]. Applied sciences, 2024, 14(7):2740.
|
[41] |
ZHONG J, WU S, CHEN W J, et al. Current insights into the microbial degradation of nicosulfuron: strains, metabolic pathways, and molecular mechanisms[J]. Chemosphere, 2023, 326:138390.
|
[42] |
ZHANG J, YIN J G, HANG B J, et al. Cloning of a novel arylamidase gene from Paracoccus sp. strain FLN-7 that hydrolyzes amide pesticides[J]. Applied and environmental microbiology, 2012, 78(14):4848-4855.
|
[43] |
GIRI B S, GEED S, VIKRANT K, et al. Progress in bioremediation of pesticide residues in the environment[J]. Environmental engineering research, 2021, 26(6):200446.
|
[44] |
RANDIKA J, BANDARA P, SOYSA H S M, et al. Bioremediation of pesticide-contaminated soil: a review on indispensable role of soil bacteria[J]. Journal of agricultural sciences (sri lanka), 2022, 17(1):19-43.
|
[45] |
BOSE S, KUMAR P S, VO D V N, et al. Microbial degradation of recalcitrant pesticides: a review[J]. Environmental chemistry letters, 2021, 19: 3209-3228.
|
[46] |
ZHENG Y Y, HUI X C, GUO H Z, et al. Research progress on microbial degradation of pesticide residues based on bacterial biofilm[J]. Chinese journal of pesticide science, 2024, 26(4):692-702.
|
[47] |
王馨芳, 郑卫刚, 寇志安, 等. 三唑类农药的微生物降解研究进展[J]. 寒旱农业科学, 2023, 2(10):909-916.
|
[48] |
HUANG Y, XIAO L, LI F, et al. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review[J]. Molecules, 2018, 23(9):2313.
|
[49] |
MENG X, GUO Y, WANG Y, et al. A systematic review of photolysis and hydrolysis degradation modes, degradation mechanisms, and identification methods of pesticides[J]. Journal of chemistry, 2022, 1:9552466.
|
[50] |
DAS N. Removal of atrazine from aqueous environment using immobilized Pichia kudriavzevii Atz-EN-01 by two different methods[J]. International biodeterioration & biodegradation, 2015, 104:53-58.
|