中国农学通报 ›› 2021, Vol. 37 ›› Issue (14): 41-51.doi: 10.11924/j.issn.1000-6850.casb2020-0390
所属专题: 生物技术
刘恺媛1,2(), 王茂良1, 辛海波1, 张华1(
), 丛日晨1, 黄大庄2
收稿日期:
2020-08-24
修回日期:
2020-11-16
出版日期:
2021-05-15
发布日期:
2021-05-19
通讯作者:
张华
作者简介:
刘恺媛,女,1996年出生,河北沧州人,硕士,研究方向:风景园林。通信地址:071000 河北保定莲池区乐凯南大街2596号 河北农业大学园林与旅游学院,Tel:010-64717648,E-mail: 基金资助:
Liu Kaiyuan1,2(), Wang Maoliang1, Xin Haibo1, Zhang Hua1(
), Cong Richen1, Huang Dazhuang2
Received:
2020-08-24
Revised:
2020-11-16
Online:
2021-05-15
Published:
2021-05-19
Contact:
Zhang Hua
摘要:
为了进一步阐述花青素在植物体内的合成机制,了解影响花青素合成的各类因子及其互作方式,本文归纳了调控花青素合成的内部因子和外部因素,总结了光、温度、糖类和激素等调控花青素生物合成的环境因素。围绕花青素的合成通路,就通路中的结构基因及其上游转录因子相关研究进行了总结。研究得出在植物中,各类外部因素和内在因子,通过主要的转录因子调控结构基因,影响花青素在植物体内合成与积累,维持植物体内花青素的动态平衡,这种调节机制既包括正向调控也包括负向调控。指出花青素的代谢途径逐渐完善,越来越多结构基因和转录因子的功能将被验证并被应用到观赏植物性状的基因工程改良的实践中。
中图分类号:
刘恺媛, 王茂良, 辛海波, 张华, 丛日晨, 黄大庄. 植物花青素合成与调控研究进展[J]. 中国农学通报, 2021, 37(14): 41-51.
Liu Kaiyuan, Wang Maoliang, Xin Haibo, Zhang Hua, Cong Richen, Huang Dazhuang. Anthocyanin Biosynthesis and Regulate Mechanisms in Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 41-51.
[1] |
Smeriglio A, Barreca D, Bellocco E, et al. Chemistry, Pharmacology and Health Benefits of Anthocyanins[J]. Phytotherapy Research, 2016,30(8):1265-1286.
doi: 10.1002/ptr.v30.8 URL |
[2] | 葛翠莲, 黄春辉, 徐小彪. 果实花青素生物合成研究进展[J]. 园艺学报, 2012,39(9):1655-1664. |
[3] |
Liu Y, Tikunov Y, Schouten R E, et al. Anthocyanin biosynjournal and degradation mechanisms in Solanaceous vegetables: a review[J]. Front Chem, 2018,6:52.
doi: 10.3389/fchem.2018.00052 URL |
[4] | 邱正明, 严承欢, 黄燕, 等. 莴苣花青素研究进展[J]. 中国蔬菜, 2019(12):25-30. |
[5] |
Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynjournal in plants[J]. Curr Opin Plant Biol, 2014,19:81-90.
doi: 10.1016/j.pbi.2014.05.011 URL |
[6] |
Davies K M, Albert N W, Schwinn K E. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning[J]. Funct Plant Biol, 2012,39:619-638.
doi: 10.1071/FP12195 URL |
[7] | 宋建辉, 郭长奎, 石敏. 植物花青素生物合成及调控[J/OL]. 分子植物育种, 2020(6):1-10. |
[8] | Li X, He Y M, Xie C M, et al. Effects of UV-B radiation on the infectivity of Magnaporthe oryzae and rice disease-resistant physiology in Yuanyang terraces[J]. Photochemical & photobiological sciences, 2018,17(3):8-17. |
[9] |
Hatier J B, Michael C J, Kevin G S. The functional significance of black-pigmented leaves: Photosynjournal, photoprotection and productivity in Ophiopogon planiscapus 'Nigrescens'[J]. PLoS One, 2013,8(6):e67850.
doi: 10.1371/journal.pone.0067850 URL |
[10] |
Nomi, Iwasaki-Kurashige, Matsumoto . Therapeutic Effects of Anthocyanins for Vision and Eye Health[J]. Molecules, 2019,24(18):3311.
doi: 10.3390/molecules24183311 URL |
[11] |
Weiss D. Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synjournal in expanding petals[J]. Physiologia Plantarum, 2000,110(2):152-157.
doi: 10.1034/j.1399-3054.2000.110202.x URL |
[12] | 胡可, 韩科厅, 戴思兰. 环境因子调控植物花青素苷合成及呈色的机理[J]. 植物学报, 2010,45(3):307-317. |
[13] |
Mol J, Jenkins G, Schafer E, et al. Signal per-ception, transduction, and gene expression involved in anthocyanin biosynjournal[J]. CRC Crit Rev Plant Sci, 1996,15:525-557.
doi: 10.1080/07352689609382369 URL |
[14] |
Maier A, Hoecker U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions[J]. Plant Signal Behav, 2015,10:e970440.
doi: 10.4161/15592316.2014.970440 URL |
[15] | 蒋明敏. 光信号诱导茄子花青素合成的分子机制研究[D]. 上海:上海交通大学, 2016. |
[16] | 骆菁菁, 李虹, 柏斌斌, 等. 光照对月季‘光谱’花青素合成及其CHS和DFR基因表达的影响[J]. 分子植物育种, 2013,11(1):126-131. |
[17] | 金琦芳, 孙威江, 陈志丹. 光照对紫色芽叶茶花青素合成的调控机理[J]. 生物技术通报, 2015,31(6):20-27. |
[18] | 洪艳. 菊花花青素苷依光合成的分子机制[D]. 北京:北京林业大学, 2016. |
[19] |
Moscovici S, Moalem-Beno D, Weiss D. Leaf-Mediated Light Responses in Petunia Flowers.[J]. Plant physiology, 1996,110(4):1275.
pmid: 12226259 |
[20] |
Meng X, Xing T, Wang X. The role of light in the regulation of anthocyanin accumulation in Gerbera hybrida[J]. Plant Growth Regulation, 2004,44(3):243-250.
doi: 10.1007/s10725-004-4454-6 URL |
[21] | Guo J, Han W, Wang M H. Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynjournal: a review[J]. Afr J Biotechnol, 2008,7:4966-4972. |
[22] | 盛建军, 李想, 何永美, 等. UV-B辐射对花青素合成代谢的影响及分子机理[J]. 植物生理学报, 2019,55(7):949-958. |
[23] |
Christie J M, Jenkins G I. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells[J]. Plant Cell , 1996,8:1555-1567.
pmid: 8837509 |
[24] |
Zhou B, Li Y, Xu Z, et al. Ultraviolet A-specific induction of anthocyanin biosynjournal in the swollen hypocotyls of turnip (Brassica rapa)[J]. Exp Bot, 2007,58:1771-1781.
doi: 10.1093/jxb/erm036 URL |
[25] |
Park J S, Choung M G, Kim J B, et al. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves[J]. Plant Cell Rep, 2007,26:507-516.
doi: 10.1007/s00299-006-0255-x URL |
[26] | 李梦灵, 洪艳, 戴思兰, 等. 光质对菊花花青素苷合成与呈色的影响[C].中国观赏园艺研究进展, 2016: 346-352. |
[27] |
Zhang Y, Zheng S, Liu Z, et al. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings[J]. Journal of Plant Physiology, 2011,168(4):367-374.
doi: 10.1016/j.jplph.2010.07.025 URL |
[28] |
Niu J P, Zhang G J, Zhang W T, et al. Anthocyanin concentration depends on the counterbalance between its synjournal and degradation in plum fruit at high temperature[J]. Scientific Reports, 2017,7(1):7684.
doi: 10.1038/s41598-017-07896-0 URL |
[29] | Nozaki K, Takamura T, Fukai S. Effects of high temperature on flower colour and anthocyanin content in pink flower genotypes of greenhouse chrysanthemum (Chrysanthemum morifolium Ramat.)[J]. Hortic Sci Bio- technol, 2006,81:728-734. |
[30] |
Mori K, Goto-Yamamoto N, Kitayama M, et al. Loss of anthocyanins in red-wine grape under high temperature[J]. Exp Bot , 2007,58:1935-1945.
doi: 10.1093/jxb/erm055 URL |
[31] | 赵杰堂. 激素调控植物花青素合成分子机制的研究进展[J]. 分子植物育种, 2016,14(7):1884-1891. |
[32] | Ji X H, Wang Y T, Zhang R, et al. Effect of auxin,cytokinin and nitrogen on anthocyanin biosynjournal in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana)[J]. Plant Cell Tiss, 2015,120:325-337. |
[33] |
Lewis D R, Ramirez M V, Miller N D, et al. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks[J]. Plant Physiol, 2011,156(1):144-164.
doi: 10.1016/S0176-1617(00)80295-3 URL |
[34] |
Wei Y Z, Hu F C, Hu G B, et al. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn[J]. PLoS ONE, 2011,6(4):e19455.
doi: 10.1371/journal.pone.0019455 URL |
[35] |
Weiss D, Luit A, Knegt E, et al. Identification of endogenous gibberellins in petunia flower. Induction of anthocyanin biosynthetic gene expression and the an- tagonistic effect of abscisic acid[J]. Plant Physiol, 1995,107(3):695-702.
doi: 10.1104/pp.107.3.695 URL |
[36] |
Loreti E, Povero G, Novi G, et al. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabi- dopsis[J]. New Phytol, 2008,179:1004-1016.
doi: 10.1111/nph.2008.179.issue-4 URL |
[37] |
El-Kereamy A, Chervin C, Roustan J P, et al. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynjournal in grape berries[J]. Physiol Plant, 2003,119(2):175-182.
doi: 10.1034/j.1399-3054.2003.00165.x URL |
[38] | 杨琳, 王宇, 杨剑飞, 等. 花青素积累相关负调控因子的研究进展[J]. 园艺学报, 2014,41(9):1873-1884. |
[39] | 高树林, 张超, 杜丹妮, 等. 乙烯和葡萄糖处理对‘洛阳红’牡丹切花花色和花青素苷合成的影响[J]. 园艺学报, 2015,42(7):1356-1366. |
[40] | 庄维兵, 刘天宇, 束晓春, 等. 植物体内花青素苷生物合成及呈色的分子调控机制[J]. 植物生理学报, 2018,54(11):1630-1644. |
[41] | Lotkowska E, Tohge T, Fernie R, et al. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress[J]. Plant Physiol, 2015,169:1862-1880. |
[42] |
Solfanelli C, Poggi A, Loreti E, et al. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis[J]. Plant Physiol, 2006,140(2) : 637-646.
pmid: 16384906 |
[43] |
Al Sane K O, Hesham E L. Biochemical and genetic evidences of anthocyanin biosynjournal and accumulation in a selected tomato mutant[J]. Rendiconti Lincei, 2015,26(3):293-306.
doi: 10.1007/s12210-015-0446-x URL |
[44] |
Hong L, Qian Q, Tang D, et al. A mutation in the rice chalcone isomerase gene causes the golden hull and internode phenotype[J]. Planta, 2012,236(1):141-151.
doi: 10.1007/s00425-012-1598-x URL |
[45] |
宋雪薇, 魏解冰, 狄少康, 等. 花青素转录因子调控机制及代谢工程研究进展[J]. 植物学报, 2019,54(1):133-156.
doi: 10.11983/CBB18016 pmid: b6cecefe-2d5b-46f4-8a39-4e98716ee5f0 |
[46] |
Wang X, Wu J, Guan M, et al. Arabidopsis MYB4 plays dual roles in flavonoid biosynjournal[J]. The Plant Journal, 2020,101(3):637-652.
doi: 10.1111/tpj.v101.3 URL |
[47] |
Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. The Origin and Evolution of Plant Flavonoid Metabolism[J]. Frontiers in Plant Science, 2019,10:943.
doi: 10.3389/fpls.2019.00943 pmid: 31428108 |
[48] |
Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010,15(10):573-581.
doi: 10.1016/j.tplants.2010.06.005 URL |
[49] | Wang Z B, Yu Q B, Shen W X, et al. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids[J]. BioMed Central, 2018,18(1):189. |
[50] |
Antonio H. CHS Silencing Suggests a Negative Cross-Talk Between Wax and Flavonoid Pathways in Tomato Fruit Cuticle[J]. Plant Signal Behav, 2015,10(5):e1019979.
doi: 10.1080/15592324.2015.1019979 URL |
[51] | Mehdy M C, Lamb C J. Chalcone is some rase cDNA cloning and mRNA induction by fungalelicitor, wounding and infection[J]. The EMBOJournal, 1987,6(6):1527-1533. |
[52] |
Tunen A J, Hartman S A, Mol J N, et al. Regulation of chalcone-flavanone isomerase (CHI) gene expression in Petunia hybrida: the use of alternative promoters in corolla,anthers and pollen[J]. Plant Molecular Biology, 1989,12:539-551.
doi: 10.1007/BF00036968 URL |
[53] | Wang H, Wang W, Zhan J, et al. Tissue-specific accumulation and subcellular localization of chalcone isomerase (CHI) in grapevine[J]. Plant Cell, 2019,137:125-137. |
[54] | 徐靖, 朱家红, 韩义胜, 等. 一个新的甘薯查尔酮异构酶基因的克隆和表达分析[J]. 基因组学与应用生物学, 2018,37(02):845-849. |
[55] |
Wang R, Zou Q J, Guo Q S, et al. Cloning and prokaryotic expression of CHI in Chrysanthemum morifolium cv.'Hangju'[J]. China Journal of Chinese materia medica, 2019,44(14):3015-3021.
doi: 10.19540/j.cnki.cjcmm.20190325.102 pmid: 31602848 |
[56] | 贾赵东, 马佩勇, 边小峰, 等. 植物花青素合成代谢途径及其分子调控[J]. 西北植物学报, 2014,34(07):1496-1506. |
[57] | 薛超, 韩纪盈, 彭继庆, 等. 绣球花花色相关基因HmF3H的克隆及其表达分析[J/OL]. 分子植物育种, 2019,99(2):1-8. |
[58] | 冯志熙, 刘应丽, 朱佳鹏, 等. 滇水金凤黄烷酮3-羟化酶基因(IuF3H)的克隆及表达分析[J]. 分子植物育种, 2021,19(1):65-71. |
[59] | 甘林鑫, 李厚华, 李果, 等. 凤丹牡丹二氢黄酮醇-4-还原酶基因克隆及表达特性分析[J]. 江苏农业科学, 2020,48(10):73-79. |
[60] |
Hongmei Z, Qian L, Huifang L, et al. Differential Regulation of Anthocyanins in Green and Purple Turnips Revealed by Combined De Novo Transcriptome and Metabolome Analysis[J]. International Journal of Molecular Sciences, 2019,20(18):4387.
doi: 10.3390/ijms20184387 URL |
[61] | Kim E Y, Kim C W, Kim S. Identification of two novel mutant ANS alleles responsible for inactivation of anthocyanidin synthase and failure of anthocyanin production in onion (Allium cepa L.)[J]. Euphytica, 2016,3(212):1573-5060. |
[62] |
Li J, Liu C Y, Zhao A C, et al. A MITE Insertion in the Promoter Region of Anthocyanidin Synthase from Morus alba L.[J]. Plant Molecular Biology Reporter, 2018,36:188-194.
doi: 10.1007/s11105-018-1069-z URL |
[63] | 梁立军, 杨祎辰, 王二欢, 等. 植物花青素生物合成与调控研究进展[J]. 安徽农业科学, 2018,46(21):18-24. |
[64] |
An X H, Tian Y, Chen K Q, et al. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. Plant Physiol, 2012,169(7):710-717.
doi: 10.1016/j.jplph.2012.01.015 URL |
[65] | Zhu Z X, Wang H L, Wang Y T, et al. Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation[J]. Exp Bot 66, 2015, 3775-3789. |
[66] |
Rahim Md Abdur, Robin Arif Hasan Khan, Natarajan Sathishkumar , et al. Identification and Characterization of Anthocyanin Biosynjournal-Related Genes in Kohlrabi[J]. Applied biochemistry and biotechnology, 2018,184(4):1120-1141.
doi: 10.1007/s12010-017-2613-2 pmid: 28965308 |
[67] |
Chen S Y, Wang S C. GLABRA2, A Common Regulator for Epidermal Cell Fate Determination and Anthocyanin Biosynjournal in Arabidopsis[J]. International journal of molecular sciences, 2019,20(20):4997.
doi: 10.3390/ijms20204997 URL |
[68] | Liu J Y, Osbourn A, Ma P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Plant, 2015,8:689-708. |
[69] |
Chen L H, Hu B, Qin Y H. Advance of the negative regulation of anthocyanin biosynjournal by MYB transcription factors[J]. Plant Physiology and Biochemistry, 2019,136:178-187.
doi: 10.1016/j.plaphy.2019.01.024 URL |
[70] | Paz-Ares J, Ghosal D, Wienand U, et al. The regulatory c1locus of Zea mays encodes a protein with homology to MYB protooncogene products and with structural similarities to transcriptional activators[J]. EMBO, 1897,6:3553-3558. |
[71] | Shi M Z, Xie D Y. Biosynjournal and Metabolic engineering of anthocyanins in Arabidopsis thaliana[J]. Biotechnol, 2014,8:47-60. |
[72] |
Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010,15:573-581.
doi: 10.1016/j.tplants.2010.06.005 URL |
[73] | Rinaldo A, Cavallini E, Jia Y M, et al. A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins[J]. Plant Physiol, 2015,169:1897-1916. |
[74] |
Lin-Wang K, Bolitho K, Grafton K, et al. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae[J]. BMC Plant Biol, 2010,10:50.
doi: 10.1186/1471-2229-10-50 pmid: 20302676 |
[75] |
Samuel Chaves-Silva, Adolfo Luís dos Santos, Antonio Chalfun-Júnior , et al. Understanding the genetic regulation of anthocyanin biosynjournal in plants Tools for breeding purple varieties of fruits and vegetables[J]. Phytochemistry, 2018,153:11-27.
doi: S0031-9422(18)30147-X pmid: 29803860 |
[76] | Linwang K, McGhie T K, Wang M , et al. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca)[J]. Front. Plant Sci, 2016,5:651. |
[77] |
Chiu L W, Zhou X J, Burke S, et al. The purple cauli flower arises from activation of a MYB transcription factor[J]. Plant Physiol, 2010,154:1470-1480.
doi: 10.1104/pp.110.164160 URL |
[78] | Cultrone A, Cotroneo P S, Recupero G R. Cloning and molecular characterization of R2R3-MYB and bHLH-MYC transcription factors from Citrus sinensis[J]. Tree Genet, 2010,6:101-112. |
[79] |
Zhang Y, Chu G, Hu Z, et al. Genetically engineered anthocyanin pathway for high health-promoting pigment production in eggplant[J]. Mol Breed, 2016,36:1-14.
doi: 10.1007/s11032-015-0425-z URL |
[80] | 赵恩鹏, 成玉富, 杨旭. 茄科植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2021,19(5):1522-1530. |
[81] | 严倩, 赵佳, 刘荣, 等. 月季花青素苷相关R2R3-MYB蛋白基因的克隆和表达分析[J]. 中国农业科学, 2015,48(7):1392-1404. |
[82] | 王雪霁, 梁立雄, 李潞滨, 等. 小兰屿蝴蝶兰R2R3-MYB转录因子分析[J]. 林业科学研究, 2018,31(3):104-113. |
[83] | 郭亚飞, 马煜明, 水刘媛, 等. 茶树Cs MYB123转录因子的克隆及表达特性研究[J]. 西北植物学报, 2018(1):9-16. |
[84] |
Wang L J, Lu W X, Ran L Y, et al. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynjournal but inhibits secondary cell wall formation in Populus tomentosa[J]. The Plant Journal: for cell and molecular biology, 2019,99(4):733-751.
doi: 10.1111/tpj.v99.4 URL |
[85] | 祝志欣, 鲁迎青. 花青素代谢途径与植物颜色变异[J]. 植物学报, 2016,51(1):107-119. |
[86] |
Jin W, Wang H, Li M, et al. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynjournal and determines fruit skin colour in sweet cherry (Prunus avium L.)[J]. Plant Biotechnol, 2016,14:2120-2133.
doi: 10.1111/pbi.2016.14.issue-11 URL |
[87] |
Borevitz J O, Xia Y J, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynjournal[J]. Plant Cell, 2000,12:2383-2393.
pmid: 11148285 |
[88] | 刘新宇, 韩洪强, 葛海燕, 等. 茄子花青素合成中SmTTG1、SmGL3和SmTT8的表达及其蛋白质间的相互作用[J]. 园艺学报, 2014,41(11):2241-2249. |
[89] |
Zhang F, Gonzalez A, Zhao M, et al. A network of redundant bHLH proteins functions in all TTG1 dependent pathways of Arabidopsis[J]. Development, 2000,130:4859-4869.
doi: 10.1242/dev.00681 URL |
[90] | 王玉, 杨雪, 杨蕊菁, 等. 调控苯丙烷类生物合成的MYB类转录因子研究进展[J]. 安徽农业大学学报, 2019,46(5):859-864. |
[91] |
Tamagnone, L, Merida A, Parr A , et al. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynjournal in transgenic tobacco[J]. Plant Cell, 1998,10:135-154.
doi: 10.1105/tpc.10.2.135 URL |
[92] |
Nemie-Feyissa D, Olafsdottir S M, Heidari B, et al. Nitrogen depletion and small R3-MYB transcription factors affecting anthocyanin accumulation in Arabidopsis leaves[J]. Phytochemistry, 2014,98:34-40.
doi: 10.1016/j.phytochem.2013.12.006 pmid: 24388610 |
[93] | Matsui K, Umemura Y, Ohme-Takagi M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynjournal in Arabidopsis[J]. Plant, 2008,55:954-967. |
[94] | Wang X, Wang X, Hu Q, et al. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynjournal in Arabidopsis[J]. Plant, 2015,83:300-311. |
[95] |
Albert N W, Davies K M, Lewis D H, et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots[J]. Plant Cell, 2014,26:962-980.
doi: 10.1105/tpc.113.122069 URL |
[96] | 杨梦婷, 张春, 王作平, 等. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020,46(12):2008-2016. |
[97] |
Ludwig S R, Habera L F, Dellaporta S L, et al. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the MYC homology region[J]. Proc Natl Acad Sci USA, 1989,86:7092-7096.
doi: 10.1073/pnas.86.18.7092 URL |
[98] | Payne C T, Zhang F, Lloyd A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Ge- netics, 2000,156:1349-1362. |
[99] |
Nesi N, Debeaujon I, Jond C, et al. The TT8 gene encodes a basic helix- loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J]. Plant Cell, 2000,12:1863-1878.
pmid: 11041882 |
[100] |
Bai Y H, Pattanaik S, Patra B, et al. Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b of tobacco have originatedfrom two ancestors and are functionally active[J]. Planta, 2001,234:363-375.
doi: 10.1007/s00425-011-1407-y URL |
[101] | Espley R V, Hellens R P, Putterill J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10[J]. Plant, 2007,49:414-427. |
[102] | Lai B, Du L, Liu R, et al. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynjournal in Nicotiana and Litchi chinensis during anthocyanin accumulation[J]. Front Plant Sci, 2016,7:166. |
[103] |
Junyan Z, Qingshan X, Shiqi Z, et al. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis)[J]. Plant Science, 2020,290:110306.
doi: 10.1016/j.plantsci.2019.110306 URL |
[104] |
Gisbert C, Dumm J M, Prohens J, et al. A spontaneous eggplant (Solanum melongena L.) color mutant conditions anthocyanin free fruit pigmentation[J]. Hortscience, 2016,51:793-798.
doi: 10.21273/HORTSCI.51.7.793 URL |
[105] |
Li C, Qiu J, Ding L, et al. Anthocyanin biosynjournal regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals[J]. Plant Physiol Biochem, 2017,112:335-345.
doi: 10.1016/j.plaphy.2017.01.019 URL |
[106] |
Yuan Z, Guomin L, Xingyuan X, et al. bHLH Transcription Factor TsMYC2 Is Associated With the Blue Grain Character in Triticale (Triticum × Secale)[J].Plant Cell Rep, 2019 Oct, 38(10):1291-1298.
doi: 10.1007/s00299-019-02449-3 pmid: WOS:000487818600007 |
[107] |
Lihuan W, Wei T, Yawen H, et al. A MYB/bHLH complex regulates tissue specific anthocyanin biosynjournal in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang[J]. The Plant Journal, 2019,99(2):359-378.
doi: 10.1111/tpj.14330 pmid: 30912865 |
[108] | 冯如, 李泽宏, 袁红慧, 等. 银杏两个WD40转录因子基因克隆及序列分析[J]. 北方园艺, 2017(18):100-108. |
[109] |
Quattrocchio F, Verweij W, Kroon A, et al. PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop-Helix transcription factors of the anthocyanin pathway[J]. The Plant Cell, 2006,18(5):1274-1291.
doi: 10.1105/tpc.105.034041 URL |
[110] |
Aguilar-Barragán A, Ochoa-Alejo N. Virus-induced silencing of MYB and WD40 transcription factor genes affects the accumulation of anthocyanins in chilli pepper fruit[J]. Biol Plant, 2014,58:567-574.
doi: 10.1007/s10535-014-0427-4 URL |
[111] |
Shan X T, Li Y Q, Yang S, et al. A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynjournal in both Freesia hybrida and Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2019,141:60-72.
doi: 10.1016/j.plaphy.2019.05.015 URL |
[1] | 李少杰, 肖清山, 宋福强, 王歆. 丛枝菌根(AM)真菌扩培技术研究进展[J]. 中国农学通报, 2022, 38(9): 115-122. |
[2] | 巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析[J]. 中国农学通报, 2022, 38(8): 17-24. |
[3] | 刘鹏, 吴巧花, 舒惠理, 周莉荫, 王小东. 油茶对胁迫因子的响应机制研究进展[J]. 中国农学通报, 2022, 38(7): 24-28. |
[4] | 余兰, 王浩然, 张莹, 邢红运, 丁琪, 赵宝珍, 崔娜. 转录因子MYCs调控番茄表皮毛萜类化合物的分子机制研究进展[J]. 中国农学通报, 2022, 38(6): 87-93. |
[5] | 王岩, 王丽伟, 赵洪颜, 赵敏, 杨洪岩. 不同人参栽培土壤养分及微生物群落组成特征解析[J]. 中国农学通报, 2022, 38(5): 60-68. |
[6] | 曾端香, 余曦玥, 于敬文, 贾建平, 彭德良, 黄文坤. 松材线虫病的检测及综合防治技术[J]. 中国农学通报, 2022, 38(4): 86-91. |
[7] | 颜越, 金荷仙, 王丽娴. 国内外社区花园健康效益研究进展[J]. 中国农学通报, 2022, 38(34): 68-75. |
[8] | 徐晓美, 李颖, 衡周, 徐小万, 李涛, 王恒明. 响应辣椒疫霉菌诱导的CaWRKY转录因子筛选及其信号通路分析[J]. 中国农学通报, 2022, 38(32): 22-31. |
[9] | 王晴, 方文生, 李园, 王秋霞, 颜冬冬, 曹坳程. 杀线虫剂新品种及作用机制研究进展[J]. 中国农学通报, 2022, 38(30): 100-107. |
[10] | 隋振全, 范金石, 尹崇山, 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素[J]. 中国农学通报, 2022, 38(3): 121-126. |
[11] | 石杨, 尹希龙, 李王胜, 兴旺. PEG模拟干旱胁迫对耐旱型与干旱敏感型甜菜种质形态指标的影响[J]. 中国农学通报, 2022, 38(29): 45-51. |
[12] | 曹晶潇, 刘军武, 蔡静菊, 方迎春, 朱健, 王平, 朱姗姗, 蒋夏昕. 影响沉积物释磷强度环境因素研究进展[J]. 中国农学通报, 2022, 38(27): 35-43. |
[13] | 马贵芳, 辛海波, 修莉, 孙朝霞, 张华. 荞麦脱壳性状的研究进展[J]. 中国农学通报, 2022, 38(24): 19-27. |
[14] | 谢洪宝, 关诗洋, 陈一民, 隋跃宇, 彭博, 汤博宇, 焦晓光. 设施菜田土壤氮素淋溶特征及阻控措施的研究进展[J]. 中国农学通报, 2022, 38(23): 82-87. |
[15] | 王耀, 李良涛, 梁世杰, 张晓华, 周月康, 马传宇. 青崖寨自然保护区农户生态补偿意愿与生计资本研究[J]. 中国农学通报, 2022, 38(2): 157-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||