| [1] | GRANT R F. Nitrogen mineralization drives the response of forest productivity to soil warming: Modelling in ecosys vs. measurements from the Harvard soil heating experiment[J]. Ecological modelling, 2014, 288:38-46. doi: 10.1016/j.ecolmodel.2014.05.015    
																																					URL
 | 
																													
																						| [2] | 张笑千, 陈卓, 常鹏,等. 土壤氮素矿化研究进展[J]. 北方园艺, 2010(15):33-36. | 
																													
																						| [3] | 李聪, 吕晶花, 陆梅,等. 文山自然保护区典型植被土壤碳氮储量变化特征[J]. 生态学杂志, 2021:1-15[2021-08-18]. https://doi.org/10.13292/j.1000-4890.202110.019. | 
																													
																						| [4] | MOFFAT A S. Global nitrogen overload problem grows critical[J]. Science, 1998. 279: 988-989. doi: 10.1126/science.279.5353.988    
																																					URL
 | 
																													
																						| [5] | 陈立新, 姜一,等. 红松混交林凋落物氮储量及分解释放对土壤氮的影响[J]. 生态学杂志, 2015.34(1):114-120. | 
																													
																						| [6] | 张萍, 章广琦, 赵一娉,等. 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J]. 生态学报, 2018.38(14):5087-5098. | 
																													
																						| [7] | 马红亮, 闫聪微, 高人,等. 林下凋落物去除与施氮对针叶林和阔叶林土壤氮的影响[J]. 环境科学研究, 2013.26(12):1316-1324. | 
																													
																						| [8] | 袁志忠, Singh A N, 胡颖圆,等. 添加凋落物对土壤跳虫群落的影响[J]. 土壤通报, 2014.45(4):841-846. | 
																													
																						| [9] | KUZYAKOV Y, HORWATH W R, DORODNIKOV M. Review and synthesis of the effects of elevated atmospheric CO2on soil processes: NO changes in pools, but increased fluxes and accelerated cycles[J]. Soil biology and biochemistry, 2019, 128:66-78. doi: 10.1016/j.soilbio.2018.10.005    
																																					URL
 | 
																													
																						| [10] | WANG X, DAI W W, FILLEY T R, et al. Above ground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest[J]. Soil biology and biochemistry, 2021,,Aug. | 
																													
																						| [11] | 阮超越, 刘小飞, 吕茂奎,等. 杉木人工林凋落物添加与去除对土壤碳氮及酶活性的影响[J]. 土壤学报, 2020.57(4):954-962. | 
																													
																						| [12] | 马寰菲, 解梦怡. 秦岭不同海拔森林土壤-植物-凋落物化学计量特征对土壤氮组分的影响[J]. 生态学杂志, 2020.39(3):749-757. | 
																													
																						| [13] | 王泽西, 陈倩妹, 黄尤优,等. 川西亚高山森林土壤呼吸和微生物生物量碳氮对施氮的响应[J]. 生态学报, 2019.39(19):7197-7207. | 
																													
																						| [14] | 姚甜甜, 张鹏, 万丹,等. 藏东南色季拉山迎风坡土壤物理性质垂直梯度差异性分析[J]. 北方园艺, 2019(24):94-102. | 
																													
																						| [15] | CHEN S P, WANG W T, XU W T, et al. Plant diversity enhances productivity and soil carbon storage[J]. Proceedings of the national academy of sciences of the United States Of America, 2018, 115:4027-4032. | 
																													
																						| [16] | 林宇, 何宗明, 丁国昌,等. 闽东南沿海2种防护林土壤有机碳和全氮垂直分布[J]. 东北林业大学学报, 2015, 43(9):67-71. | 
																													
																						| [17] | 裴蓓, 高国荣, 凋落物分解对森林土壤碳库影响的研究进展[J]. 中国农学通报2018.34(26):58-64. | 
																													
																						| [18] | 陈晓萍, 郭炳桥, 钟全林,等. 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应[J]. 生态学报, 2018.38( 1) : 273-281. | 
																													
																						| [19] | 王鑫, 罗雪萍, 字洪标.等. 青海森林凋落物生态化学计量特征及其影响因子[J]. 草业学报, 2019, 28(8):1-14. | 
																													
																						| [20] | 赵耀, 王百田, 李萌,等. 晋西吕梁山区3种森林碳氮磷生态化学计量特征[J]. 应用与环境生物学报, 2018.24(3):518-524. | 
																													
																						| [21] | BINGHAM A H, COTRUFO M F. Organic nitrogen storage in mineral soil[J].Implications for policy and management[J]. Sci total environment, 2016,May 1;551-552:116-26. | 
																													
																						| [22] | LI Z, TIAN D, WANG B, Wang J, et al. Microbes drive global soil nitrogen mineralization and availability[J]. Glob Chang Biol, 2019, Mar,25(3):1078-1088. | 
																													
																						| [23] | CHMITZ A, SANDERS T G M, BOLTE A, et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition[J]. Environ Pollution, 2019, Jan; 244:980-994. doi: 10.1016/j.envpol.2018.09.101    
																																					URL
 | 
																													
																						| [24] | RIBEIRO-KUMARA C, KÖSTER E, AALTONEN H, et al. How do forest fires affect soil greenhouse gas emissions in upland boreal forests?[J]. A review. Environment Res, 2020,May,184:109328. | 
																													
																						| [25] | SUBASHREE K, DAR J A, SUNDARAPANDIAN S. Variation in soil organic carbon stock with forest type in tropical forests of Kanyakumari Wildlife Sanctuary,Western Ghats, India[J]. Environment monitor assess, 2019, Oct, 30;191(11):690. | 
																													
																						| [26] | VESTERDAL L, CLARKE N, SIGURDSSON B D, et al. Do tree species influence soil carbon stocks in temperate and boreal forests?[J]. Forest ecology and management, 2013, 309: 4-18. doi: 10.1016/j.foreco.2013.01.017    
																																					URL
 | 
																													
																						| [27] | CALLESEN I, BORKEN W, KALBITZ K, et al. Long-term development of nitrogen flues in a coniferous ecosystem: does soil freezing trigger nitrate leaching?[J]. Journal of plant nutrition and soil science, 2007, 170(2):186-196. | 
																													
																						| [28] | SOCCI A M, TEMPLER P H. Temporal patterns of inorganic nitrogen uptake by mature sugar maple(Acer saccharum Marsh.) and red spruce (picea rubens Sarg.) trees using two common approaches[J]. Plant ecology and diversity, 2011, 4(2/3):141-152. doi: 10.1080/17550874.2011.624557    
																																					URL
 |