Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (29): 1-6.doi: 10.11924/j.issn.1000-6850.casb20190900610
Special Issue: 水稻
Ma Mengying1(), Gong Wenjing2, Kang Xuemeng1, Duan Haiyan1(
)
Received:
2019-09-04
Revised:
2019-11-17
Online:
2020-10-15
Published:
2020-10-16
Contact:
Duan Haiyan
E-mail:1582095598@qq.com;1144983024@qq.com
CLC Number:
Ma Mengying, Gong Wenjing, Kang Xuemeng, Duan Haiyan. The Improvement of Ideal Plant Type of Rice: A Review[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 1-6.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20190900610
序号 | 基因符号 | 基因位置 | 基因调控方式 | 主要调控水稻表型 | ||
---|---|---|---|---|---|---|
1 | sd1 | 水稻第1号染色体上[ | SD1功能缺失突变的等位基因sd1参与赤霉素(Gibberellin,GA)的生物合成,编码由389个氨基酸组成的GA20ox[ | SD1控制水稻株高,sd1矮化水稻。 | ||
2 | d2 | 水稻第1号染色体上 | d2的编码产物是细胞色素P450家族的CYP90D2,与BR生物合成有关[39],其表达受BL的反馈调节[39]。 | 隐性突变d2导致油菜素内酯生物合成受阻,植株矮化、叶片直立、穗部密集。 | ||
3 | gn1a | 水稻第1号染色体短臂 | gn1a编码一种降解细胞分裂素的酶,该基因表达量降低,使花序分生组织中细胞分裂素累积,导致水稻繁殖器官数目增多[ | Gn1a主要影响水稻每穗粒数,为主效基因。 | ||
4 | tud1 | 水稻第3号染色体短臂中部 | tud1编码一个U-box家族的E3泛素连接酶,参与BR应答,而对GA或CK没有应答。Tud1与异三聚体G蛋白α亚基d1互作调控BR介导的水稻生长[ | d1 tud1-5双突变体第2节间特异变短、叶直立、谷粒变短[ | ||
5 | lpa1 | 水稻第3号染色体上 | lpa1 编码一个位于细胞核的转录抑制因子,可以抑制与C-22羟基化和6-脱氧的油菜素内酯互作的生长素信号[ | LPA1过表达植株叶倾角变小,叶片直立。lpa1株型松散,分蘖角和叶角增大[ | ||
6 | eui1 | 水稻第5号染色体长臂中部 | eui1 编码位于内质网上的细胞色素P450单加氧酶CYP714D1,经该酶催化的环氧化作用降低了水稻GA4的活性[ | EUI1控制水稻顶部第1节间的生长,隐性突变eui1会引起水稻顶部节间的异常伸长。 | ||
7 | ghd7 | 水稻第7号染色体短臂 | ghd7无明显的锌指结构,编码一个由257氨基酸组成的核蛋白,产物为CCT结构蛋白[ | Ghd7 能同时控制水稻每穗粒数、株高和抽穗期。Ghd7的增强表达能推迟抽穗、增加株高和每穗粒数,减弱表达的耐寒性有所增加[ | ||
8 | prog1 | 水稻第7号染色体短臂端[ | prog1编码一个Cys2-His2锌指蛋白[ | PROG1控制野生稻匍匐生长,是控制水稻分蘖角度的主效基因。prog1控制普通栽培稻直立生长,穗粒数增加。 | ||
9 | tig1 | 水稻第8号染色体上[ | tig1编码一个TCP转录激活因子[ | TIG1控制水稻分蘖倾斜生长。tig1使细胞长度和分蘖角减少,水稻直立生长。(籼稻) | ||
10 | tac1 | 水稻第9染色体长臂端 | tac1编码区的第4个内含子中的碱基突变导致mRNA的稳定性降低,在加工过程中不能正常剪切,poly(A)加尾提前,从而降低了tca1的水平[ | TAC1上调表达导致分蘖角度增大,下调表达导致分蘖角度减。在栽培过程中的合理密植导致人为选择了tac1。(粳稻) |
序号 | 基因符号 | 基因位置 | 基因调控方式 | 主要调控水稻表型 | ||
---|---|---|---|---|---|---|
1 | sd1 | 水稻第1号染色体上[ | SD1功能缺失突变的等位基因sd1参与赤霉素(Gibberellin,GA)的生物合成,编码由389个氨基酸组成的GA20ox[ | SD1控制水稻株高,sd1矮化水稻。 | ||
2 | d2 | 水稻第1号染色体上 | d2的编码产物是细胞色素P450家族的CYP90D2,与BR生物合成有关[39],其表达受BL的反馈调节[39]。 | 隐性突变d2导致油菜素内酯生物合成受阻,植株矮化、叶片直立、穗部密集。 | ||
3 | gn1a | 水稻第1号染色体短臂 | gn1a编码一种降解细胞分裂素的酶,该基因表达量降低,使花序分生组织中细胞分裂素累积,导致水稻繁殖器官数目增多[ | Gn1a主要影响水稻每穗粒数,为主效基因。 | ||
4 | tud1 | 水稻第3号染色体短臂中部 | tud1编码一个U-box家族的E3泛素连接酶,参与BR应答,而对GA或CK没有应答。Tud1与异三聚体G蛋白α亚基d1互作调控BR介导的水稻生长[ | d1 tud1-5双突变体第2节间特异变短、叶直立、谷粒变短[ | ||
5 | lpa1 | 水稻第3号染色体上 | lpa1 编码一个位于细胞核的转录抑制因子,可以抑制与C-22羟基化和6-脱氧的油菜素内酯互作的生长素信号[ | LPA1过表达植株叶倾角变小,叶片直立。lpa1株型松散,分蘖角和叶角增大[ | ||
6 | eui1 | 水稻第5号染色体长臂中部 | eui1 编码位于内质网上的细胞色素P450单加氧酶CYP714D1,经该酶催化的环氧化作用降低了水稻GA4的活性[ | EUI1控制水稻顶部第1节间的生长,隐性突变eui1会引起水稻顶部节间的异常伸长。 | ||
7 | ghd7 | 水稻第7号染色体短臂 | ghd7无明显的锌指结构,编码一个由257氨基酸组成的核蛋白,产物为CCT结构蛋白[ | Ghd7 能同时控制水稻每穗粒数、株高和抽穗期。Ghd7的增强表达能推迟抽穗、增加株高和每穗粒数,减弱表达的耐寒性有所增加[ | ||
8 | prog1 | 水稻第7号染色体短臂端[ | prog1编码一个Cys2-His2锌指蛋白[ | PROG1控制野生稻匍匐生长,是控制水稻分蘖角度的主效基因。prog1控制普通栽培稻直立生长,穗粒数增加。 | ||
9 | tig1 | 水稻第8号染色体上[ | tig1编码一个TCP转录激活因子[ | TIG1控制水稻分蘖倾斜生长。tig1使细胞长度和分蘖角减少,水稻直立生长。(籼稻) | ||
10 | tac1 | 水稻第9染色体长臂端 | tac1编码区的第4个内含子中的碱基突变导致mRNA的稳定性降低,在加工过程中不能正常剪切,poly(A)加尾提前,从而降低了tca1的水平[ | TAC1上调表达导致分蘖角度增大,下调表达导致分蘖角度减。在栽培过程中的合理密植导致人为选择了tac1。(粳稻) |
[1] |
Wang Y, Li J. The plant architecture of rice (Oryza sativa)[J]. Plant Molecular Biology, 2005,59(1):75-84.
doi: 10.1007/s11103-004-4038-x URL pmid: 16217603 |
[2] |
邱丽娟, 郭勇, 黎裕, 等. 中国作物新基因发掘:现状、挑战与展望[J]. 作物学报, 2011,37(1):1-17.
doi: 10.3724/SP.J.1006.2011.00001 URL |
[3] | 姜树坤, 徐正进, 陈温福. 水稻QTL图位克隆的特征分析[J]. 遗传, 2008(9):1121-1126. |
[4] |
姚晓云, 李清, 刘进, 等. 不同环境下水稻株高和穗长的QTL分析[J]. 中国农业科学, 2015,48(3):407-414.
doi: 10.3864/j.issn.0578-1752.2015.03.01 URL |
[5] |
Wang B, Smith S M, Li J. Genetic Regulation of Shoot Architecture[J]. Annual Review of Plant Biology, 2018,69:437-468.
doi: 10.1146/annurev-arplant-042817-040422 URL pmid: 29553800 |
[6] | 刘贵富, 陈明江, 李明, 等. 水稻育种行业创新进展[J]. 植物遗传资源学报, 2018,19(3):416-429. |
[7] |
Ward S P, Leyser O. Shoot branching[J]. Current Opinion in Plant Biology, 2003,7(1):73-78.
doi: 10.1016/j.pbi.2003.10.002 URL pmid: 14732444 |
[8] | 王凤华, 王贵学, 黄俊丽, 等. 水稻株型的研究进展[J]. 中国农学通报, 2004(6):131-135. |
[9] | Engledow F T, Wadham S M. Investigations on yield in the cereals 1. I[J]. The Journal of Agricultural Science, 1923,13(4):390-439. |
[10] | Boysen-Jensen P. Die Stoffproduktion der Pflanzen[J]. Protoplasma, 1933,18(1):311. |
[11] | Heath O V S, Gregory F G. The constancy of the mean net assimilation rate and its ecological importance[J]. Annals of Botany, 1938,2(4):811-818. |
[12] | 徐正进, 陈温福, 张龙步, 等. 水稻直立穗性状评价与利用研究进展[J]. 沈阳农业大学学报, 1995(4):335-341. |
[13] | 杨守仁, 张龙步, 陈温福, 等. 水稻理想株形育种的基础研究及其与国内外同类研究的比较[J]. 沈阳农业大学学报, 1991(S1):1-5. |
[14] | 杨守仁, 张龙步, 陈温福, 等. 水稻超高产育种的理论和方法[J]. 中国水稻科学, 1996(2):115-120. |
[15] | 周开达, 汪旭东, 李仕贵, 等. 亚种间重穗型杂交稻研究[J]. 中国农业科学, 1997(5):92-94. |
[16] | 汪开治. 国际水稻所将推出理想株型水稻新品种[J]. 中国农技推广, 1996(4):26. |
[17] | 袁隆平. 杂交水稻超高产育种[J]. 杂交水稻, 1997(6):4-9. |
[18] | 邓启云, 袁隆平, 蔡义东, 等. 超级杂交稻模式组合的形态学优势分析[J]. 西南农业学报, 2005(5):12-15. |
[19] | 陈温福, 徐正进, 张龙步, 等. 不同株型粳稻品种的冠层特征和物质生产关系的研究[J]. 中国水稻科学, 1991(2):67-71. |
[20] | 郑景生, 林文, 姜照伟, 等. 超高产水稻根系发育形态学研究[J]. 福建农业学报, 1999(3):1-6. |
[21] | 朱德峰, 林贤青, 曹卫星. 超高产水稻品种的根系分布特点[J]. 南京农业大学学报, 2000(4):5-8. |
[22] | 王锦艳, 钏兴宽, 康洪灿, 等. 水稻理想株型育种的理论和方法初论[J]. 时代农机, 2018,45(2):160. |
[23] | 杨守仁, 张龙步, 陈温福, 等. 水稻超高产育种的理论和方法[J]. 中国水稻科学, 1996(2):115-120. |
[24] | 陈温福, 徐正进, 张文忠, 等. 水稻新株型创造与超高产育种(英文)[J]. 作物学报, 2001(5):665-672. |
[25] | 张忠旭, 陈温福, 杨振玉, 等. 水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J]. 沈阳农业大学学报, 1999(2):81-85. |
[26] | 郎有忠, 周桂香, 杨建昌, 等. 两个高产两系杂交稻组合形态与产量形成特征的研究[J]. 杂交水稻, 2002(4):53-56. |
[27] | 苏祖芳, 许乃霞, 孙成明, 等. 水稻抽穗后株型指标与产量形成关系的研究[J]. 中国农业科学, 2003(1):115-120. |
[28] |
Zhao S, Xiang J, Xue H. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control[J]. Molecular plant, 2013,6(1):174-187.
doi: 10.1093/mp/sss064 URL pmid: 22888153 |
[29] |
Bing Y, Weiya X, Lijun L, et al. QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice[J]. Acta Genetica Sinica, 2006,33(9):824-832.
doi: 10.1016/S0379-4172(06)60116-9 URL pmid: 16980129 |
[30] | 高健强. 水稻卷叶性状的遗传分析及QTL定位[D]. 贵州:贵州大学, 2006. |
[31] | Liu C, Zhou X, Chen D, et al. Natural Variation of Leaf Thickness and Its Association to Yield Traits in indica Rice[J]. Journal of Integrative Agriculture, 2014,13(2):316-325. |
[32] | 周桂林. 水稻叶片大小QTL的鉴定与分析[D]. 武汉:华中农业大学, 2009. |
[33] | 松岛省三, 杨春和. 理想水稻栽培技术概要[J]. 北方水稻, 1978(1):43-47. |
[34] | 袁隆平. 超级杂交稻研究进展[J]. 农学学报, 2018,8(1):71-73. |
[35] | 董桂春, 居静, 于小风, 等. 不同穗重类型常规籼稻品种产量形成的差异研究[J]. 扬州大学学报:农业与生命科学版, 2010,31(1):49-54. |
[36] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. Green revolution: a mutant gibberellin-synjournal gene in rice[J]. Nature, 2002,416(6882):701.
URL pmid: 11961544 |
[37] |
Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synjournal[J]. DNA Research, 2002,9(1):11-17.
doi: 10.1093/dnares/9.1.11 URL pmid: 11939564 |
[38] | Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1),“green revolution” rice, contains a defective gibberellin 20-oxidase gene[J]. Proceedings of the National Academy of Sciences, 2002,99(13):9043-9048. |
[39] |
Hong Z, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450[J]. The Plant Cell, 2003,15(12):2900-2910.
URL pmid: 14615594 |
[40] |
Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005,309(5735):741-745.
doi: 10.1126/science.1113373 URL pmid: 15976269 |
[41] |
Hu X, Qian Q, Xu T, et al. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice[J]. PLoS genetics, 2013,9(3):e1003391.
doi: 10.1371/journal.pgen.1003391 URL pmid: 23526892 |
[42] |
Liu J M, Park S J, Huang J, et al. Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice[J]. Journal of experimental botany, 2016,67(6):1883-1895.
doi: 10.1093/jxb/erw002 URL pmid: 26826218 |
[43] |
Wu X, Tang D, Li M, et al. Loose Plant Architecture1, an indeterminate domain protein involved in shoot gravitropism, regulates plant architecture in rice[J]. Plant physiology, 2013,161(1):317-329.
doi: 10.1104/pp.112.208496 URL pmid: 23124325 |
[44] |
Zhu Y G, Nomura T, Xu Y, et al. ELONGATED UPPERMOST INTERNODE, a hybrid rice genetic factor, encodes a P450 monooxygenase that catalyzes novel gibberellin-deactivating epoxidation[J]. Plant Cell, 2006,18:442-456.
URL pmid: 16399803 |
[45] | Luo A, Qian Q, Yin H, et al. EUI1, Encoding a Putative Cytochrome P450 Monooxygenase, Regulates the Internodes Elongation by Modulating GA Responses in Rice[J]. 2006,47(2):181-191. |
[46] |
Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008,40(6):761.
URL pmid: 18454147 |
[47] |
Jin J, Huang W, Gao J, et al. Genetic control of rice plant architecture under domestication[J]. Nature Genetics, 2008,40(11):1365.
URL pmid: 18820696 |
[48] |
Tan L, Li X, Liu F, et al. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nature Genetics, 2008,40(11):1360.
doi: 10.1038/ng.197 URL pmid: 18820699 |
[49] | Mcsteen P, Leyser O. Shoot branching[J]. Plant Biology, 2005,56:353-374. |
[50] |
Yu B, Lin Z, Li H, et al. TAC1, a major quantitative trait locus controlling tiller angle in rice.[J]. The Plant Journal, 2007,52(5):891-898.
doi: 10.1111/j.1365-313X.2007.03284.x URL pmid: 17908158 |
[51] |
Jiang J, Tan L, Zhu Z, et al. Molecular Evolution of the TAC1 Gene from Rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2012,39(10):551-560.
doi: 10.1016/j.jgg.2012.07.011 URL pmid: 23089365 |
[52] |
Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010,42(6):541.
doi: 10.1038/ng.591 URL pmid: 20495565 |
[53] |
Luo L, Li W, Miura K, et al. Control of tiller growth of rice by OsSPL14 and Strigolactones, which work in two independent pathways[J]. Plant & Cell Physiology, 2012,53(10):1793-1801.
doi: 10.1093/pcp/pcs122 URL pmid: 22960246 |
[54] |
Springer N. Shaping a better rice plant[J]. Nature Genetics, 2010,42(6):475.
doi: 10.1038/ng0610-475 URL pmid: 20502488 |
[55] |
Zhang L, Yu H, Ma B, et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J]. Nature Communications, 2017,8:14789.
doi: 10.1038/ncomms14789 URL pmid: 28317902 |
[56] | 胡文军, 张淑红, 赵忠, 等. 水稻OsTB1基因的结构及其表达分析(英文)[J]. 植物生理与分子生物学学报, 2003(06):507-514. |
[57] |
Lu Z, Yu H, Xiong G, et al. Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[J]. The Plant cell, 2013,25(10):3743-3759.
doi: 10.1105/tpc.113.113639 URL pmid: 24170127 |
[58] | Wang J, Zhou L, Shi H, et al. A single transcription factor promotes both yield and immunity in rice[J]. Science (New York, N.Y.), 2018,361(6406). |
[60] | Shimono M, Sugano S, Nakayama A, et al. Rice WRKY45 Plays a Crucial Role in Benzothiadiazole-Inducible Blast Resistance[J]. 200719(6):2064-2076. |
[61] |
Tao Z, Liu H, Qiu D, et al. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions[J]. Plant Physiology, 2009,151(2):936-948.
doi: 10.1104/pp.109.145623 URL pmid: 19700558 |
[62] |
Duan E, Wang Y, Li X, et al. OsSHI1 Regulates Plant Architecture Through Modulating the Transcriptional Activity of IPA1 in Rice[J]. The Plant cell, 2019.
doi: 10.1105/tpc.20.00384 URL pmid: 32958564 |
[63] |
Wang S, Wu K, Qian Q, et al. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield[J]. Cell Research, 2017,27(9):1142.
doi: 10.1038/cr.2017.98 URL pmid: 28776570 |
[64] | 黄卫衡, 吕启明, 辛业芸. 水稻分蘖角度的研究进展[J]. 杂交水稻, 2019,34(3):1-7. |
[1] | ZHOU Dongdong, ZHANG Jun, GE Mengjie, LIU Zhonghong, ZHU Xiaohuan, LI Chunyan. Effects of Different Nitrogen Treatments on Grain Yield, Nitrogen Utilization Efficiency and Quality of Late-sowing Wheat ‘Huaimai 36’ Following Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 1-7. |
[2] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[3] | LUO Xianfu, LIU Wenqiang, PAN Xiaowu, DONG Zheng, LIU Sanxiong, LIU Licheng, YANG Biaoren, SHENG Xinnian, LI Xiaoxiang. Mapping of Plant Height QTL Using NILs Derived from Residual Heterozygous Lines in Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 1-5. |
[4] | ZHANG Shuangyan, REN Hao, DING Wenqing, WU Yutao. Research Progress on Material Utilization of Agricultural Waste Rice Husk [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 101-108. |
[5] | HUANG Yu, CHEN Bin, XIAO Guanli. The Physiological Response of the Local Rice Variety of ‘Acuce’ of Hani Nationality in Yunnan Against the Feeding of Nilaparvata lugens Stål [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 123-129. |
[6] | SHI Yonghai, CAO Xiangde, XU Jiabo. Effect of COVID-19 Epidemic on Alosa sapidissima Production in China and the Countermeasures [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 151-156. |
[7] | LI Xinghua, WANG Huan, ZHANG Sheng, CAI Xingxing, ZHOU Qiang, ZHOU Nan. Nitrogen Application Rate and Mode: Effects on Yield and Dry Matter Accumulation and Transport After Flowering of Late Indica Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 6-13. |
[8] | YE Pei, LIU Kequn, SHEN Shuanghe, LIU Kaiwen, LIU Zhixiong, DENG Yanjun. Risk Analysis and Regionalization of Heat Damage During Heading and Flowering Stage of Mid-season Rice in Hubei Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 110-117. |
[9] | WANG Yifan, LAO Xiaocan, YU Liping, YE Hailong. Rice Variety ‘Yongyou 15’: The Suitability of Meteorological Conditions for Sowing by Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 106-109. |
[10] | YAO Jie, CHENG Lei, ZHOU Tao, LEI Pengkun, ZHU Yuejian, MA Lei. Advances in Germplasm Resources and Genetic Breeding of Pseudostellaria heterophylla in China [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 62-66. |
[11] | LIU Xiaohang, MA Shuqing, ZHAO Jing, QUAN Hujie, DENG Kuicai, CHAI Qingrong. Yield Response of Japonica Rice of Northeast China to Low Temperature in Different Time Periods of Booting Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 91-98. |
[12] | LI Xuefeng, WANG Jian, YE Xiaoyuan, ZHANG Xiuting, WANG Lixue. Plant Aqueous Extract of Momordica charantia: Effects on Rice Seed Germination and Seedling Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 1-7. |
[13] | LIANG Zengji, MU Fang, WANG Nan. Evolution and Prospect of Wheat Breeding in Weibei Rainfed Highland Region of China [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 8-14. |
[14] | YAN Yuntao, HE Xi, ZHANG Haiqing, HE Jiwai. Advances in Research on the Storability of Rice Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 1-8. |
[15] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||