Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (35): 1-13.doi: 10.11924/j.issn.1000-6850.casb20191200983
Tan Jingfa(), He Wenchuang, Dong Xilong, Dang Tengfei, Xie Yi, Xi Kun, Sun Yongsheng, Hu Yalin, Jin Deming(
)
Received:
2019-12-22
Revised:
2020-02-06
Online:
2020-12-15
Published:
2020-12-18
Contact:
Jin Deming
E-mail:952050369@qq.com;djin@mail.hzau.edu.cn
CLC Number:
Tan Jingfa, He Wenchuang, Dong Xilong, Dang Tengfei, Xie Yi, Xi Kun, Sun Yongsheng, Hu Yalin, Jin Deming. DREB2A Gene Resistant to Osmotic Stress in Rice Germplasms: Genetic Diversity Analysis[J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 1-13.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20191200983
编号 | 材料(品种/系谱) | 类别 | 来源 | |||
---|---|---|---|---|---|---|
1 | J23B | 籼型常规品种 | 湖南省常德市农业科学研究所 | |||
2 | II-32B | 籼型常规品种 | 湖南杂交水稻中心 | |||
3 | 珍仙97B | 籼型常规品种 | 温州市农业科学研究所 | |||
4 | 中9B | 籼型常规品种 | 中国水稻研究所 | |||
5 | 新武香B | 籼型常规品种 | 武汉大学 | |||
6 | IR79126B | 籼型常规品种 | 国际水稻研究所 | |||
7 | STB | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
8 | YTB | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
9 | 恩恢58 | 籼型常规品种 | 湖北省恩施自治州农业科学院 | |||
10 | R180 | 籼型常规品种 | 湖南农业大学水稻科学研究所 | |||
11 | 盐稻4号 | 籼型常规品种 | 江苏沿海地区农业科学研究所 | |||
12 | 鄂丰丝苗 | 籼型常规品种 | 江西农业大学农学院、武汉亘谷源生态农业科技有限公司 | |||
13 | 粤农丝苗 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
14 | 粤禾丝苗 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
15 | 五山丝苗 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
16 | 福稻88 | 籼型常规品种 | 武汉隆福康农业发展有限公司 | |||
17 | 银连占 | 籼型常规品种 | 中国 | |||
18 | 中广优二号 | 籼型常规品种 | 中国农业科学院作物科学研究所、广东省农业科学院水稻研究所 | |||
19 | 广恢128 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
20 | AH8 | 籼型常规品种 | 中国 | |||
21 | 合丰占 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
22 | R039 | 籼型常规品种 | 中国 | |||
23 | R522 | 籼型常规品种 | 中南民族大学生命科学学院 | |||
24 | R138 | 籼型常规品种 | 湖北省农业科学院作物育种栽培研究所 | |||
25 | R650 | 籼型常规品种 | 中国 | |||
26 | 黄华占 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
27 | IR66417 | 籼型常规品种 | 国际水稻研究所 | |||
28 | M1s | 籼型常规品种 | 自主选育 | |||
29 | M4s | 籼型常规品种 | 自主选育 | |||
30 | M164s | 籼型常规品种 | 自主选育 | |||
31 | M199s | 籼型常规品种 | 自主选育 | |||
32 | 农香16 | 籼型常规品种 | 湖南省水稻研究所 | |||
33 | R615 | 籼型常规品种 | 中国 | |||
34 | 绵恢501 | 籼型常规品种 | 绵阳市农业科学研究所 | |||
35 | WAB357-B-9-H3-2 | 非洲新稻 | 非洲水稻中心 | |||
36 | WAB540-1-B-P-6-1-1 | 非洲新稻 | 非洲水稻中心 | |||
37 | WAB450-1-B-P-103-HB | 非洲新稻 | 非洲水稻中心 | |||
38 | WAB540-11-1-P31-1-H1 | 非洲新稻 | 非洲水稻中心 | |||
39 | ILs1 | 非洲栽培稻基因渗入系 | 自主选育 | |||
40 | ILs2 | 非洲栽培稻基因渗入系 | 自主选育 | |||
41 | ILs3 | 非洲栽培稻基因渗入系 | 自主选育 | |||
42 | ILs4 | 非洲栽培稻基因渗入系 | 自主选育 | |||
43 | ILs5 | 非洲栽培稻基因渗入系 | 自主选育 | |||
44 | ILs6 | 非洲栽培稻基因渗入系 | 自主选育 | |||
45 | ILs7 | 非洲栽培稻基因渗入系 | 自主选育 | |||
46 | ILs8 | 非洲栽培稻基因渗入系 | 自主选育 | |||
47 | ILs9 | 非洲栽培稻基因渗入系 | 自主选育 | |||
48 | ILs10 | 非洲栽培稻基因渗入系 | 自主选育 | |||
49 | ILs11 | 非洲栽培稻基因渗入系 | 自主选育 | |||
50 | ILs12 | 非洲栽培稻基因渗入系 | 自主选育 | |||
51 | ILs13 | 非洲栽培稻基因渗入系 | 自主选育 | |||
52 | ILs14 | 非洲栽培稻基因渗入系 | 自主选育 | |||
53 | ILs15 | 非洲栽培稻基因渗入系 | 自主选育 | |||
54 | ILs16 | 非洲栽培稻基因渗入系 | 自主选育 | |||
55 | ILs17 | 非洲栽培稻基因渗入系 | 自主选育 | |||
56 | ILs18 | 非洲栽培稻基因渗入系 | 自主选育 | |||
57 | ILs19 | 非洲栽培稻基因渗入系 | 自主选育 | |||
58 | ILs20 | 非洲栽培稻基因渗入系 | 自主选育 | |||
59 | ILs21 | 非洲栽培稻基因渗入系 | 自主选育 | |||
60 | ILs22 | 非洲栽培稻基因渗入系 | 自主选育 | |||
61 | ILs23 | 非洲栽培稻基因渗入系 | 自主选育 | |||
62 | ILs24 | 非洲栽培稻基因渗入系 | 自主选育 | |||
63 | ILs25 | 非洲栽培稻基因渗入系 | 自主选育 | |||
64 | RAM3 | 非洲栽培稻 | 非洲水稻中心 | |||
65 | RAM54 | 非洲栽培稻 | 非洲水稻中心 | |||
66 | RAM131 | 非洲栽培稻 | 非洲水稻中心 | |||
67 | RAM24 | 非洲栽培稻 | 非洲水稻中心 | |||
68 | RAM48 | 非洲栽培稻 | 非洲水稻中心 | |||
69 | RAM55 | 非洲栽培稻 | 非洲水稻中心 | |||
70 | RAM85 | 非洲栽培稻 | 非洲水稻中心 | |||
71 | RM90 | 非洲栽培稻 | 非洲水稻中心 | |||
72 | RAM96 | 非洲栽培稻 | 非洲水稻中心 | |||
73 | RAM111 | 非洲栽培稻 | 非洲水稻中心 | |||
74 | RAM120 | 非洲栽培稻 | 非洲水稻中心 | |||
75 | RAM133 | 非洲栽培稻 | 非洲水稻中心 | |||
76 | RAM134 | 非洲栽培稻 | 非洲水稻中心 |
编号 | 材料(品种/系谱) | 类别 | 来源 | |||
---|---|---|---|---|---|---|
1 | J23B | 籼型常规品种 | 湖南省常德市农业科学研究所 | |||
2 | II-32B | 籼型常规品种 | 湖南杂交水稻中心 | |||
3 | 珍仙97B | 籼型常规品种 | 温州市农业科学研究所 | |||
4 | 中9B | 籼型常规品种 | 中国水稻研究所 | |||
5 | 新武香B | 籼型常规品种 | 武汉大学 | |||
6 | IR79126B | 籼型常规品种 | 国际水稻研究所 | |||
7 | STB | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
8 | YTB | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
9 | 恩恢58 | 籼型常规品种 | 湖北省恩施自治州农业科学院 | |||
10 | R180 | 籼型常规品种 | 湖南农业大学水稻科学研究所 | |||
11 | 盐稻4号 | 籼型常规品种 | 江苏沿海地区农业科学研究所 | |||
12 | 鄂丰丝苗 | 籼型常规品种 | 江西农业大学农学院、武汉亘谷源生态农业科技有限公司 | |||
13 | 粤农丝苗 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
14 | 粤禾丝苗 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
15 | 五山丝苗 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
16 | 福稻88 | 籼型常规品种 | 武汉隆福康农业发展有限公司 | |||
17 | 银连占 | 籼型常规品种 | 中国 | |||
18 | 中广优二号 | 籼型常规品种 | 中国农业科学院作物科学研究所、广东省农业科学院水稻研究所 | |||
19 | 广恢128 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
20 | AH8 | 籼型常规品种 | 中国 | |||
21 | 合丰占 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
22 | R039 | 籼型常规品种 | 中国 | |||
23 | R522 | 籼型常规品种 | 中南民族大学生命科学学院 | |||
24 | R138 | 籼型常规品种 | 湖北省农业科学院作物育种栽培研究所 | |||
25 | R650 | 籼型常规品种 | 中国 | |||
26 | 黄华占 | 籼型常规品种 | 广东省农业科学院水稻研究所 | |||
27 | IR66417 | 籼型常规品种 | 国际水稻研究所 | |||
28 | M1s | 籼型常规品种 | 自主选育 | |||
29 | M4s | 籼型常规品种 | 自主选育 | |||
30 | M164s | 籼型常规品种 | 自主选育 | |||
31 | M199s | 籼型常规品种 | 自主选育 | |||
32 | 农香16 | 籼型常规品种 | 湖南省水稻研究所 | |||
33 | R615 | 籼型常规品种 | 中国 | |||
34 | 绵恢501 | 籼型常规品种 | 绵阳市农业科学研究所 | |||
35 | WAB357-B-9-H3-2 | 非洲新稻 | 非洲水稻中心 | |||
36 | WAB540-1-B-P-6-1-1 | 非洲新稻 | 非洲水稻中心 | |||
37 | WAB450-1-B-P-103-HB | 非洲新稻 | 非洲水稻中心 | |||
38 | WAB540-11-1-P31-1-H1 | 非洲新稻 | 非洲水稻中心 | |||
39 | ILs1 | 非洲栽培稻基因渗入系 | 自主选育 | |||
40 | ILs2 | 非洲栽培稻基因渗入系 | 自主选育 | |||
41 | ILs3 | 非洲栽培稻基因渗入系 | 自主选育 | |||
42 | ILs4 | 非洲栽培稻基因渗入系 | 自主选育 | |||
43 | ILs5 | 非洲栽培稻基因渗入系 | 自主选育 | |||
44 | ILs6 | 非洲栽培稻基因渗入系 | 自主选育 | |||
45 | ILs7 | 非洲栽培稻基因渗入系 | 自主选育 | |||
46 | ILs8 | 非洲栽培稻基因渗入系 | 自主选育 | |||
47 | ILs9 | 非洲栽培稻基因渗入系 | 自主选育 | |||
48 | ILs10 | 非洲栽培稻基因渗入系 | 自主选育 | |||
49 | ILs11 | 非洲栽培稻基因渗入系 | 自主选育 | |||
50 | ILs12 | 非洲栽培稻基因渗入系 | 自主选育 | |||
51 | ILs13 | 非洲栽培稻基因渗入系 | 自主选育 | |||
52 | ILs14 | 非洲栽培稻基因渗入系 | 自主选育 | |||
53 | ILs15 | 非洲栽培稻基因渗入系 | 自主选育 | |||
54 | ILs16 | 非洲栽培稻基因渗入系 | 自主选育 | |||
55 | ILs17 | 非洲栽培稻基因渗入系 | 自主选育 | |||
56 | ILs18 | 非洲栽培稻基因渗入系 | 自主选育 | |||
57 | ILs19 | 非洲栽培稻基因渗入系 | 自主选育 | |||
58 | ILs20 | 非洲栽培稻基因渗入系 | 自主选育 | |||
59 | ILs21 | 非洲栽培稻基因渗入系 | 自主选育 | |||
60 | ILs22 | 非洲栽培稻基因渗入系 | 自主选育 | |||
61 | ILs23 | 非洲栽培稻基因渗入系 | 自主选育 | |||
62 | ILs24 | 非洲栽培稻基因渗入系 | 自主选育 | |||
63 | ILs25 | 非洲栽培稻基因渗入系 | 自主选育 | |||
64 | RAM3 | 非洲栽培稻 | 非洲水稻中心 | |||
65 | RAM54 | 非洲栽培稻 | 非洲水稻中心 | |||
66 | RAM131 | 非洲栽培稻 | 非洲水稻中心 | |||
67 | RAM24 | 非洲栽培稻 | 非洲水稻中心 | |||
68 | RAM48 | 非洲栽培稻 | 非洲水稻中心 | |||
69 | RAM55 | 非洲栽培稻 | 非洲水稻中心 | |||
70 | RAM85 | 非洲栽培稻 | 非洲水稻中心 | |||
71 | RM90 | 非洲栽培稻 | 非洲水稻中心 | |||
72 | RAM96 | 非洲栽培稻 | 非洲水稻中心 | |||
73 | RAM111 | 非洲栽培稻 | 非洲水稻中心 | |||
74 | RAM120 | 非洲栽培稻 | 非洲水稻中心 | |||
75 | RAM133 | 非洲栽培稻 | 非洲水稻中心 | |||
76 | RAM134 | 非洲栽培稻 | 非洲水稻中心 |
引物名称 | 引物序列 | 产物长度/bp | 退火温度/℃ | GC含量/% |
---|---|---|---|---|
DREB2AOF | CGTTGATTGCTGATAGCCTCC | 963 | 59.13 | 52.38 |
DREB2AOR | TATTCCTATTGACCCGCAGCA | 59.23 | 47.62 | |
OF3 | GCTGATAGCCTCCTTGATTTTTGG | 944 | 60.20 | 45.83 |
OR3 | ACCCGCAGCATGACTACTAC | 59.54 | 55.00 | |
IF3 | CCTCATTGGGTCAGGAAGAAGA | 543 | 59.43 | 50.00 |
IR3 | GACTACACGTTCCAACACATCC | 59.26 | 50.00 | |
OF4 | TAGAGAGGAGGGCACACACC | 976 | 60.61 | 60.00 |
OR4 | CTTTCTTGGACCCCTTGGCT | 59.89 | 55.00 | |
OF6 | GACATGGGGTAAGTGGGTGG | 869 | 60.03 | 60.00 |
OR6 | TCTTTGAAGTATCTGCCACTCGT | 59.48 | 43.48 |
引物名称 | 引物序列 | 产物长度/bp | 退火温度/℃ | GC含量/% |
---|---|---|---|---|
DREB2AOF | CGTTGATTGCTGATAGCCTCC | 963 | 59.13 | 52.38 |
DREB2AOR | TATTCCTATTGACCCGCAGCA | 59.23 | 47.62 | |
OF3 | GCTGATAGCCTCCTTGATTTTTGG | 944 | 60.20 | 45.83 |
OR3 | ACCCGCAGCATGACTACTAC | 59.54 | 55.00 | |
IF3 | CCTCATTGGGTCAGGAAGAAGA | 543 | 59.43 | 50.00 |
IR3 | GACTACACGTTCCAACACATCC | 59.26 | 50.00 | |
OF4 | TAGAGAGGAGGGCACACACC | 976 | 60.61 | 60.00 |
OR4 | CTTTCTTGGACCCCTTGGCT | 59.89 | 55.00 | |
OF6 | GACATGGGGTAAGTGGGTGG | 869 | 60.03 | 60.00 |
OR6 | TCTTTGAAGTATCTGCCACTCGT | 59.48 | 43.48 |
ENC | G+C2 | G+C3s | G+Cc | G+C | |
---|---|---|---|---|---|
A1 | 56.923 | 0.465 | 0.444 | 0.493 | 0.492 |
A2 | 54.884 | 0.462 | 0.448 | 0.471 | 0.453 |
A3 | 57.806 | 0.463 | 0.434 | 0.49 | 0.489 |
A4 | 56.762 | 0.461 | 0.44 | 0.491 | 0.49 |
A5 | 56.582 | 0.461 | 0.442 | 0.492 | 0.491 |
A6 | 57.177 | 0.461 | 0.446 | 0.493 | 0.492 |
A7 | 56.78 | 0.465 | 0.446 | 0.494 | 0.493 |
A8 | 56.389 | 0.461 | 0.436 | 0.49 | 0.488 |
A9 | 57.177 | 0.461 | 0.446 | 0.493 | 0.492 |
A10 | 57.177 | 0.461 | 0.446 | 0.493 | 0.492 |
A11 | 57.481 | 0.465 | 0.446 | 0.494 | 0.493 |
A12 | 57.177 | 0.461 | 0.446 | 0.493 | 0.492 |
ENC | G+C2 | G+C3s | G+Cc | G+C | |
---|---|---|---|---|---|
A1 | 56.923 | 0.465 | 0.444 | 0.493 | 0.492 |
A2 | 54.884 | 0.462 | 0.448 | 0.471 | 0.453 |
A3 | 57.806 | 0.463 | 0.434 | 0.49 | 0.489 |
A4 | 56.762 | 0.461 | 0.44 | 0.491 | 0.49 |
A5 | 56.582 | 0.461 | 0.442 | 0.492 | 0.491 |
A6 | 57.177 | 0.461 | 0.446 | 0.493 | 0.492 |
A7 | 56.78 | 0.465 | 0.446 | 0.494 | 0.493 |
A8 | 56.389 | 0.461 | 0.436 | 0.49 | 0.488 |
A9 | 57.177 | 0.461 | 0.446 | 0.493 | 0.492 |
A10 | 57.177 | 0.461 | 0.446 | 0.493 | 0.492 |
A11 | 57.481 | 0.465 | 0.446 | 0.494 | 0.493 |
A12 | 57.177 | 0.461 | 0.446 | 0.493 | 0.492 |
密码子 | GroupI | GroupII | GroupIII | 密码子 | GroupI | GroupII | GroupIII |
---|---|---|---|---|---|---|---|
RSCU | RSCU | RSCU | RSCU | RSCU | RSCU | ||
UUU(F) | 1.2 | 1.2 | 1.11 | GCA(A) | 1.29 | 1.29 | 1.18 |
UUC(F) | 0.8 | 0.8 | 0.89 | GCG(A) | 0.57 | 0.57 | 0.62 |
UUA(L) | 0.2 | 0.2 | 0.24 | UAU(Y) | 1.08 | 1 | 0.97 |
UUG(L) | 1 | 1 | 1.1 | UAC(Y) | 0.92 | 0.92 | 1.03 |
CUU(L) | 1 | 1 | 1.04 | CAU(H) | 1.5 | 1.5 | 1.51 |
CUC(L) | 0.4 | 0.4 | 0.4 | CAC(H) | 0.5 | 0.5 | 0.49 |
CUA(L) | 1 | 1 | 0.95 | CAA(Q) | 0.92 | 0.92 | 0.95 |
CUG(L) | 2.4 | 2.4 | 2.27 | CAG(Q) | 1.08 | 1.08 | 1.05 |
AUU(I) | 1.75 | 1.75 | 1.79 | AAU(N) | 0.86 | 0.86 | 0.93 |
AUC(I) | 0.5 | 0.5 | 0.51 | AAC(N) | 1.14 | 1.14 | 1.07 |
AUA(I) | 0.75 | 0.75 | 0.71 | AAA(K) | 0.86 | 0.86 | 0.82 |
AUG(M) | 1 | 1 | 1 | AAG(K) | 1.14 | 1.14 | 1.18 |
GUU(V) | 0.23 | 0.23 | 0.32 | GAU(D) | 2 | 2 | 1.3 |
GUC(V) | 0.68 | 0.68 | 0.69 | GAC(D) | 0 | 0 | 0.7 |
GUA(V) | 0.45 | 0.45 | 0.47 | GAA(E) | 0.89 | 0.89 | 1 |
GUG(V) | 2.64 | 2.64 | 2.52 | GAG(E) | 1.11 | 1.11 | 1 |
UCC(S) | 1.71 | 1.71 | 1.64 | UGU(C) | 1.36 | 1.36 | 1.56 |
UCA(S) | 1.71 | 1.71 | 1.51 | UGC(C) | 0.64 | 0.64 | 0.44 |
UCG(S) | 0.57 | 0.57 | 0.71 | UGG(W) | 1 | 1 | 1 |
AGU(S) | 0.57 | 0.57 | 0.63 | CGU(R) | 0 | 0 | 0.11 |
AGC(S) | 1.43 | 1.43 | 1.51 | CGC(R) | 0.68 | 0.68 | 0.66 |
CCU(P) | 0 | 0 | 0.08 | CGG(R) | 0.81 | 0.81 | 0.86 |
CCA(P) | 4 | 4 | 3.92 | AGA(R) | 2.17 | 2.17 | 1.99 |
ACU(T) | 0.57 | 0.57 | 0.55 | AGG(R) | 2.33 | 2.33 | 2.38 |
ACC(T) | 1.71 | 1.71 | 1.73 | GGU(G) | 0.49 | 0.49 | 0.55 |
ACA(T) | 1.14 | 1.14 | 1.18 | GGC(G) | 0.98 | 0.99 | 0.83 |
ACG(T) | 0.57 | 0.57 | 0.55 | GGA(G) | 1.53 | 1.53 | 1.61 |
GCU(A) | 1.26 | 1.26 | 1.35 | GGG(G) | 0.98 | 0.99 | 1.01 |
GCC(A) | 0.84 | 0.84 | 0.85 |
密码子 | GroupI | GroupII | GroupIII | 密码子 | GroupI | GroupII | GroupIII |
---|---|---|---|---|---|---|---|
RSCU | RSCU | RSCU | RSCU | RSCU | RSCU | ||
UUU(F) | 1.2 | 1.2 | 1.11 | GCA(A) | 1.29 | 1.29 | 1.18 |
UUC(F) | 0.8 | 0.8 | 0.89 | GCG(A) | 0.57 | 0.57 | 0.62 |
UUA(L) | 0.2 | 0.2 | 0.24 | UAU(Y) | 1.08 | 1 | 0.97 |
UUG(L) | 1 | 1 | 1.1 | UAC(Y) | 0.92 | 0.92 | 1.03 |
CUU(L) | 1 | 1 | 1.04 | CAU(H) | 1.5 | 1.5 | 1.51 |
CUC(L) | 0.4 | 0.4 | 0.4 | CAC(H) | 0.5 | 0.5 | 0.49 |
CUA(L) | 1 | 1 | 0.95 | CAA(Q) | 0.92 | 0.92 | 0.95 |
CUG(L) | 2.4 | 2.4 | 2.27 | CAG(Q) | 1.08 | 1.08 | 1.05 |
AUU(I) | 1.75 | 1.75 | 1.79 | AAU(N) | 0.86 | 0.86 | 0.93 |
AUC(I) | 0.5 | 0.5 | 0.51 | AAC(N) | 1.14 | 1.14 | 1.07 |
AUA(I) | 0.75 | 0.75 | 0.71 | AAA(K) | 0.86 | 0.86 | 0.82 |
AUG(M) | 1 | 1 | 1 | AAG(K) | 1.14 | 1.14 | 1.18 |
GUU(V) | 0.23 | 0.23 | 0.32 | GAU(D) | 2 | 2 | 1.3 |
GUC(V) | 0.68 | 0.68 | 0.69 | GAC(D) | 0 | 0 | 0.7 |
GUA(V) | 0.45 | 0.45 | 0.47 | GAA(E) | 0.89 | 0.89 | 1 |
GUG(V) | 2.64 | 2.64 | 2.52 | GAG(E) | 1.11 | 1.11 | 1 |
UCC(S) | 1.71 | 1.71 | 1.64 | UGU(C) | 1.36 | 1.36 | 1.56 |
UCA(S) | 1.71 | 1.71 | 1.51 | UGC(C) | 0.64 | 0.64 | 0.44 |
UCG(S) | 0.57 | 0.57 | 0.71 | UGG(W) | 1 | 1 | 1 |
AGU(S) | 0.57 | 0.57 | 0.63 | CGU(R) | 0 | 0 | 0.11 |
AGC(S) | 1.43 | 1.43 | 1.51 | CGC(R) | 0.68 | 0.68 | 0.66 |
CCU(P) | 0 | 0 | 0.08 | CGG(R) | 0.81 | 0.81 | 0.86 |
CCA(P) | 4 | 4 | 3.92 | AGA(R) | 2.17 | 2.17 | 1.99 |
ACU(T) | 0.57 | 0.57 | 0.55 | AGG(R) | 2.33 | 2.33 | 2.38 |
ACC(T) | 1.71 | 1.71 | 1.73 | GGU(G) | 0.49 | 0.49 | 0.55 |
ACA(T) | 1.14 | 1.14 | 1.18 | GGC(G) | 0.98 | 0.99 | 0.83 |
ACG(T) | 0.57 | 0.57 | 0.55 | GGA(G) | 1.53 | 1.53 | 1.61 |
GCU(A) | 1.26 | 1.26 | 1.35 | GGG(G) | 0.98 | 0.99 | 1.01 |
GCC(A) | 0.84 | 0.84 | 0.85 |
[1] | Zhang Q. Strategies for developing Green Super Rice. Proceedings of the National Academy of Sciences of the United States of America, 2005,104(42):16402-16409. |
[2] | Muthurajan R, Shobbar Z, Jagadish S, et al. Physiological and Proteomic Responses of Rice Peduncles to Drought Stress. Molecular Biotechnology, 2011,48(2):173-182. |
[3] | 胡标林. 中国水稻抗旱性鉴定方法与指标研究进展[J]. 江西农业学报, 2005,17(2):56-60. |
[4] | 柴宝峰, 李洪建, 王孟本, 等. 植物抗旱性的分子生物学研究进展[J]. 山西大学学报:自然科学版, 1999(4):400-405. |
[5] | 刘翠芳, 邹杰, 陈信波. DREB转录因子与植物非生物胁迫抗性研究进展[J]. 生物技术通报, 2010(10):26-30. |
[6] |
Yamaguchi-Shinozaki K. A Novel cis-Acting Element in an Arabidopsis Gene Is Involved in Responsiveness to Drought, Low-Temperature, or High-Salt Stress[J]. Plant Cell, 1994,6(2):251-264.
doi: 10.1105/tpc.6.2.251 URL pmid: 8148648 |
[7] |
BAKER S S. The 5'-region of Arabidopsis thaliana cor15a has cisacting elements that confer cold-drought and ABA-regulatedgene expression[J]. Plant Molecular Biology, 1994,24(5):701-713.
doi: 10.1007/BF00029852 URL pmid: 8193295 |
[8] |
Zhang X W, Li C, Jiang Q T, et al. Cloning and characterization of a cold inducible Pal promoter from Fagopyrum tataricum[J]. Central European Journal of Biology, 2014,9(3):290-297.
doi: 10.2478/s11535-013-0265-y URL |
[9] |
Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L. encode transcription activators that function in drought, high salt and cold responsive gene expression[J]. Plant Journal, 2003,33(4):751-763.
doi: 10.1046/j.1365-313X.2003.01661.x URL |
[10] |
Busk P K, Jensen A B, Pagès M. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize[J]. Plant Journal, 2010,11(6):1285-1295.
doi: 10.1046/j.1365-313X.1997.11061285.x URL |
[11] |
Busk P K, Pagès M. Regulation of abscisic acid-induced transcription[J]. Plant Molecular Biology, 1998,37(3):425-435.
doi: 10.1023/a:1006058700720 URL pmid: 9617810 |
[12] |
Haake V. Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis[J]. Plant Physiology, 2002,130(2):639-648.
doi: 10.1104/pp.006478 URL pmid: 12376631 |
[13] |
Kizis D. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway[J]. Plant Journal, 2010,30(6):679-689.
doi: 10.1046/j.1365-313X.2002.01325.x URL |
[14] |
Kazuo Shinozaki, Kazuko Yamaguchi-Shinozaki. Gene Expression and Signal Transduction in Water-Stress Response[J]. Plant Physiology, 1997,115(2):327-334.
doi: 10.1104/pp.115.2.327 URL pmid: 12223810 |
[15] |
Liu Q. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998,10(8):1391-406.
doi: 10.1105/tpc.10.8.1391 URL pmid: 9707537 |
[16] |
Nakashima K, Shinwari Z K, Sakuma Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression[J]. Plant Molecular Biology, 2000,42(4):657-65.
doi: 10.1023/A:1006321900483 URL |
[17] |
Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration- and Cold-Inducible Gene Expression[J]. Biochemical & Biophysical Research Communications, 2002,290(3):998-1009.
doi: 10.1006/bbrc.2001.6299 URL pmid: 11798174 |
[18] |
Egawa C, Fuminori K, Machiko I, et al. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat[J]. Genes & Genetic Systems, 2006,81(2):77-91.
doi: 10.1266/ggs.81.77 URL pmid: 16755132 |
[19] | Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L.[J]. Plant Journal, 2007(50):54-69. |
[20] |
Xue G P, Loveridge C W. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element[J]. Plant Journal, 2010,37(3):326-339.
doi: 10.1046/j.1365-313X.2003.01963.x URL |
[21] |
Shukla R K. Expression of CAP2, an APETALA2-Family Transcription Factor from Chickpea, Enhances Growth and Tolerance to Dehydration and Salt Stress in Transgenic Tobacco[J]. Plant Physiology, 2006,142(1):113-123.
doi: 10.1104/pp.106.081752 URL pmid: 16844836 |
[22] | 汪玉洁. 功能性SNP的筛选方法及其在疾病易患性研究中的应用[J]. 医学综述, 2013,19(3):385-388. |
[23] |
Wu W, Zheng X M, Lu G, et al. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(8):2775-2780.
doi: 10.1073/pnas.1213962110 URL |
[24] |
Konishi S, Ebana K, Izawa T. Inference of the japonica Rice Domestication Process from the Distribution of Six Functional Nucleotide Polymorphisms of Domestication-Related Genes in Various Landraces and Modern Cultivars[J]. Plant & Cell Physiology, 2008,49(9):1283-93.
doi: 10.1093/pcp/pcn118 URL pmid: 18701522 |
[25] |
Gumi A M, Kanti G P, Abhishek M, et al. Characterization of OglDREB2A gene from African rice (Oryza glaberrima), comparative analysis and its transcriptional regulation under salinity stress[J]. 3 Biotech, 2018,8(2):91.
doi: 10.1007/s13205-018-1098-1 URL pmid: 29430353 |
[26] | Nayak S N, Balaji J, Upadhyaya H D, et al. Isolation and sequence analysis of DREB2A homologues in three cereal and two legume species[J]. Plant Science (Oxford), 2009,177(5):467. |
[27] |
Li L, Li N, Song S F, et al. Cloning and characterization of the drought-resistance OsRCI2-5 gene in rice (Oryza sativa L.)[J]. Genetics & Molecular Research Gmr, 2014,13(2):4022-35.
doi: 10.4238/2014.May.23.13 URL pmid: 24938613 |
[28] |
Fujino K, Sekiguchi H. Origins of functional nucleotide polymorphisms in a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice[J]. Plant Molecular Biology, 2011,75(1-2):1-10.
doi: 10.1007/s11103-010-9697-1 URL |
[29] | 金刚, 王丽萍, 龙凌云, 等. 普通野生稻线粒体蛋白质编码基因密码子使用偏好性的分析[J]. 植物科学学报, 2019,37(2):68-77. |
[30] | 刘庆坡, 谭军, 薛庆中. 籼稻品种93-11同义密码子的使用偏性[J]. 遗传学报, 2003(4):48-53. |
[31] | 雷梦林, 冯瑞云, 郝雅萍, 等. 小麦抗逆相关转录因子DREB密码子偏好性特征分析[J]. 麦类作物学报, 2019,39(1):5-13. |
[32] | Muhammad Y K B, Abdul G K, Muhammad D. The relationship between codon usage bias and salt resistant genes in Arabidopsis thaliana and Oryza sativa [J]. Pure & Applied Biology, 2012,1(2):48 |
[33] | 续晨, 蔡小宁, 钱保俐, 等. 葡萄基因组密码子使用偏好模式研究[J]. 西北植物学报, 2012,32(2):409-415. |
[34] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980,8(19):4321-4326.
doi: 10.1093/nar/8.19.4321 URL pmid: 7433111 |
[35] | 沈浩, 刘登义. 遗传多样性概述[J]. 生物学杂志, 2001,18(3):5-7. |
[36] |
Yokoi S, Quintero F J, Cubero B, et al. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response[J]. The Plant Journal, 2002,30(5):529-539.
doi: 10.1046/j.1365-313x.2002.01309.x URL pmid: 12047628 |
[37] |
Tran L S. P. Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter[J]. Plant Cell, 2004,16(9):2481-2498.
doi: 10.1105/tpc.104.022699 URL pmid: 15319476 |
[38] |
Shigaki T, Rees I, Nakhleh L, et al. Identification of Three Distinct Phylogenetic Groups of CAX Cation/Proton Antiporters[J]. Journal of Molecular Evolution, 2006,63(6):815-825.
doi: 10.1007/s00239-006-0048-4 URL |
[39] |
Caijin C, Wenchuang H, Yacouba N T, et al. Genetic Diversity and Phenotypic Variation in an Introgression Line Population Derived from an Interspecific Cross between Oryza glaberrima and Oryza sativa [J]. PLOS ONE, 2016, 11(9):e0161746-.
doi: 10.1371/journal.pone.0163875 URL pmid: 27690138 |
[40] | 赖瑞联, 林玉玲, 钟春水, 等. 龙眼生长素受体基因TIR1密码子偏好性分析[J]. 园艺学报, 2016,43(4):165-174. |
[41] |
Sharp P M. An evolutionary perspective on synopnymous codon usage in unicellular organisms[J]. Journal of Molecular Evolution, 1986,24.
doi: 10.1007/BF02099965 URL pmid: 3104614 |
[42] |
Zhou H, Wang H, Huang L F, et al. Heterogeneity in codon usages of sobemovirus genes[J]. Archives of Virology, 2005,150(8):1591-1605.
doi: 10.1007/s00705-005-0510-4 URL |
[43] | 时慧, 王玉, 杨路成, 等. 茶树抗寒调控转录因子ICE1密码子偏性分析[J]. 园艺学报, 2012(7):123-130. |
[1] | ZHOU Dongdong, ZHANG Jun, GE Mengjie, LIU Zhonghong, ZHU Xiaohuan, LI Chunyan. Effects of Different Nitrogen Treatments on Grain Yield, Nitrogen Utilization Efficiency and Quality of Late-sowing Wheat ‘Huaimai 36’ Following Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 1-7. |
[2] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[3] | LUO Xianfu, LIU Wenqiang, PAN Xiaowu, DONG Zheng, LIU Sanxiong, LIU Licheng, YANG Biaoren, SHENG Xinnian, LI Xiaoxiang. Mapping of Plant Height QTL Using NILs Derived from Residual Heterozygous Lines in Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 1-5. |
[4] | ZHANG Shuangyan, REN Hao, DING Wenqing, WU Yutao. Research Progress on Material Utilization of Agricultural Waste Rice Husk [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 101-108. |
[5] | HUANG Yu, CHEN Bin, XIAO Guanli. The Physiological Response of the Local Rice Variety of ‘Acuce’ of Hani Nationality in Yunnan Against the Feeding of Nilaparvata lugens Stål [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 123-129. |
[6] | SHI Yonghai, CAO Xiangde, XU Jiabo. Effect of COVID-19 Epidemic on Alosa sapidissima Production in China and the Countermeasures [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 151-156. |
[7] | LI Xinghua, WANG Huan, ZHANG Sheng, CAI Xingxing, ZHOU Qiang, ZHOU Nan. Nitrogen Application Rate and Mode: Effects on Yield and Dry Matter Accumulation and Transport After Flowering of Late Indica Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 6-13. |
[8] | YE Pei, LIU Kequn, SHEN Shuanghe, LIU Kaiwen, LIU Zhixiong, DENG Yanjun. Risk Analysis and Regionalization of Heat Damage During Heading and Flowering Stage of Mid-season Rice in Hubei Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 110-117. |
[9] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. |
[10] | WANG Yifan, LAO Xiaocan, YU Liping, YE Hailong. Rice Variety ‘Yongyou 15’: The Suitability of Meteorological Conditions for Sowing by Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 106-109. |
[11] | LIU Xiaohang, MA Shuqing, ZHAO Jing, QUAN Hujie, DENG Kuicai, CHAI Qingrong. Yield Response of Japonica Rice of Northeast China to Low Temperature in Different Time Periods of Booting Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 91-98. |
[12] | LI Xuefeng, WANG Jian, YE Xiaoyuan, ZHANG Xiuting, WANG Lixue. Plant Aqueous Extract of Momordica charantia: Effects on Rice Seed Germination and Seedling Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 1-7. |
[13] | YU Lan, WANG Haoran, ZHANG Ying, XING Hongyun, DING Qi, ZHAO Baozhen, CUI Na. Transcription Factor MYCs Regulating Terpenoids in Tomato Trichomes: Research Progress on Molecular Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 87-93. |
[14] | YAN Yuntao, HE Xi, ZHANG Haiqing, HE Jiwai. Advances in Research on the Storability of Rice Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 1-8. |
[15] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||