Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (27): 77-81.doi: 10.11924/j.issn.1000-6850.casb2020-0788
Special Issue: 生物技术
Previous Articles Next Articles
Li Jinxuan(), Guo Min, Wang Jiafeng, Yang Guili(
)
Received:
2020-12-15
Revised:
2021-04-13
Online:
2021-09-25
Published:
2021-10-28
Contact:
Yang Guili
E-mail:lnn0823@126.com;yanggl@scau.edu.cn
CLC Number:
Li Jinxuan, Guo Min, Wang Jiafeng, Yang Guili. AT-hook Genes and Their Role in the Regulation of Flowering in Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 77-81.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0788
[1] | Mouradov A, Cremer F Coupland G. Control of flowering time: interacting pathways as a basis for diversity[J]. Plant Cell, 2002, 14 Suppl:S111-S130. |
[2] | 曾群, 赵仲华, 赵淑清. 植物开花时间调控的信号途径[J]. 遗传, 2006, 28(8):1031-1036. |
[3] | 张艺能, 周玉萍, 陈琼华, 等. 拟南芥开花时间调控的分子基础[J]. 植物学报, 2014, 49(4):469-482. |
[4] | 孔德艳, 陈守俊, 周立国, 等. 水稻开花光周期调控相关基因研究进展[J]. 遗传, 2016, 38(6):532-542. |
[5] |
Aravind L, Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins[J]. Nucleic Acids Research, 1998, 26(19):4413-4421.
pmid: 9742243 |
[6] |
Bishop E H, Kumar R, Luo F, et al. Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize[J]. Genomics, 2020, 112(2):1233-1244.
doi: 10.1016/j.ygeno.2019.07.009 URL |
[7] | Zhao J, Favero D S, Qiu J, et al. Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants[J]. BMC Plant Biology, 2014, 14(1). |
[8] |
Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene[J]. Cell, 1992, 71(5):777-789.
pmid: 1330326 |
[9] |
Strick R, Laemmli U K. SARs are cis DNA elements of chromosome dynamics: synjournal of a SAR repressor protein[J]. Cell, 1995, 83(7):1137-1148.
pmid: 8548801 |
[10] |
Falvo J V, Thanos D, Maniatis T. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y)[J]. Cell, 1995, 83(7):1101-1111.
pmid: 8548798 |
[11] | 肖朝文, 陈福禄, 傅永福. AT-hook基因AHL27过量表达延迟拟南芥开花[J]. 中国农业科技导报, 2009, 11(4):89-94. |
[12] |
Favero D S, Kawamura A, Shibata M, et al. AT-Hook transcription factors restrict petiole growth by antagonizing PIFs[J]. Current Biology, 2020, 30(8):1454-1466 e6.
doi: S0960-9822(20)30190-1 pmid: 32197081 |
[13] |
Street I H, Shah P K, Smith A M, et al. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis[J]. Plant Journal, 2008, 54(1):1-14.
doi: 10.1111/j.1365-313X.2007.03393.x URL |
[14] |
Zhou J, Wang X, Lee J Y. Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning[J]. Plant Cell, 2013, 25(1):187-201.
doi: 10.1105/tpc.112.102210 URL |
[15] | Froese P S. AHL9, AHL11, and AHL12: gene overexpression and phenotypic analysis in Arabidopsis[D]. Washington: Washington State University Honors College, 2012. |
[16] | Sirl M, Snajdrova T, Gutierrez-Alanis D, et al. At-Hook Motif Nuclear Localised Protein 18 as a Novel Modulator of Root System Architecture[J]. International Journal of Molecular Sciences, 2020, 21(5). |
[17] |
Lim P O, Kim Y, Breeze E, et al. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants[J]. Plant Journal, 2007, 52(6):1140-1153.
doi: 10.1111/tpj.2007.52.issue-6 URL |
[18] |
Matsushita A, Furumoto T, Ishida S, et al. AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase[J]. Plant Physiology, 2007, 143(3):1152-1162.
pmid: 17277098 |
[19] | 贾琦石. 拟南芥AT-hook基因TEK调控阿拉伯半乳糖蛋白AGPs控制花粉外壁内层发育[D]. 上海:上海师范大学, 2014. |
[20] |
Zhou L, Liu Z, Liu Y, et al. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice[J]. Scientific Reports, 2016, 6:30264.
doi: 10.1038/srep30264 URL |
[21] |
Endt D V, Silva M S E, Kijne J W, et al. Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-hook DNA-binding proteins[J]. Plant Physiology, 2007, 144(3):1680-1689.
doi: 10.1104/pp.107.096115 URL |
[22] | 丁丽雪, 李涛, 李植良, 等. 番茄AT-hook基因家族的鉴定及胁迫条件下的表达分析[J]. 植物遗传资源学报, 2016, 17(2):303-315. |
[23] | Matsushita A, Ohmi M, Yamaka K, et al. Analysis of AGF1, an AT-hook transcription factor involved in GA-negative feedback of AtGA3ox1[J]. Plant and Cell Physiology, 2007, 48:S59-S59. |
[24] |
Filichkin S A, Wu Q, Busov V, et al. Enhancer trapping in woody plants: Isolation of the ET304 gene encoding a putative AT-hook motif transcription factor and characterization of the expression patterns conferred by its promoter in transgenic Populus and Arabidopsis[J]. Plant Science, 2006, 171(2):206-216.
doi: 10.1016/j.plantsci.2006.03.011 URL |
[25] | 张大勇, 戚维聪, 万群, 等. 5个大豆AT-hook基因GmAHLs的克隆与定位分析[J]. 植物资源与环境学报, 2017, 26(4):1-7. |
[26] | 张贵慰, 曾珏, 郭维, 等. 水稻AT-hook基因家族生物信息学分析[J]. 植物学报, 2014, 49(1):49-62. |
[27] |
Xu Y, Zong W, Hou X, et al. OsARID3, an AT-rich Interaction Domain-containing protein, is required for shoot meristem development in rice[J]. Plant Journal, 2015, 83(5):806-17.
doi: 10.1111/tpj.2015.83.issue-5 URL |
[28] | 唐雄杰, 郭维, 王云月, 等. 水稻内稃发育相关基因PAL1时空表达研究[J]. 云南农业大学学报, 2011, 26(2):149-155. |
[29] |
Yin D, Liu X, Shi Z, et al. An AT-hook protein DEPRESSED PALEA1 physically interacts with the TCP Family transcription factor RETARDED PALEA1 in rice[J]. Biochemical and Biophysical Research Communications, 2018, 495(1):487-492.
doi: 10.1016/j.bbrc.2017.11.031 URL |
[30] |
Jin Y, Luo Q, Tong H N, et al. An AT-hook gene is required for palea formation and floral organ number control in rice[J]. Developmental Biology, 2011, 359(2):277-288.
doi: 10.1016/j.ydbio.2011.08.023 URL |
[31] |
Luo Q, Zhou K, Zhao X, et al. Identification and fine mapping of a mutant gene for palealess spikelet in rice[J]. Planta, 2005, 221(2):222-230.
doi: 10.1007/s00425-004-1438-8 URL |
[32] |
Weigel D, Ahn J H, Blazquez M A, et al. Activation tagging in Arabidopsis[J]. Plant Physiology, 2000, 122(4):1003-1013.
pmid: 10759496 |
[33] |
Ng K H, Yu H, Ito T. AGAMOUS controls GIANT KILLER, a multifunctional chromatin modifier in reproductive organ patterning and differentiation[J]. PLOS Biology, 2009, 7(11):e1000251.
doi: 10.1371/journal.pbio.1000251 URL |
[34] |
Su Y, Kwon C S, Bezhani S, et al. The N-terminal ATPase AT-hook-containing region of the Arabidopsis chromatin-remodeling protein SPLAYED is sufficient for biological activity[J]. Plant Journal, 2006, 46(4):685-699.
doi: 10.1111/tpj.2006.46.issue-4 URL |
[35] |
Yun J, Kim Y S, Jung J H, et al. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis[J]. The Journal of Biological Chemistry, 2012, 287(19):15307-15316.
doi: 10.1074/jbc.M111.318477 URL |
[36] |
Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues[J]. Nature Reviews Genetics, 2012, 13(9):627-639.
doi: 10.1038/nrg3291 URL |
[37] |
Brambilla V, Fornara F. Molecular control of flowering in response to day length in rice[J]. Journal of Integrative Plant Biology, 2013, 55(5):410-418.
doi: 10.1111/jipb.12033 |
[38] | Hayama R, Izawa T, Yano M, et al. A gene network controlling photoperiodic regulation of flowering in rice[J]. Plant and Cell Physiology, 2002, 43:S77-S77. |
[39] |
Komiya R, Shimamoto K. Genetic and epigenetic regulation of flowering in rice[J]. Plant Biotechnology, 2008, 25(3):279-284.
doi: 10.5511/plantbiotechnology.25.279 URL |
[40] |
Lee Y S, An G. Regulation of Flowering Time in Rice[J]. Journal of Plant Biology, 2015, 58(6):353-360.
doi: 10.1007/s12374-015-0425-x URL |
[41] |
Tsuji H, Taoka K, Shimamoto K. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation[J]. Current Opinion Plant Biology, 2011, 14(1):45-52.
doi: 10.1016/j.pbi.2010.08.016 URL |
[42] |
Tsuji H, Taoka K, Shimamoto K. Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions[J]. Current Opinion in Plant Biology, 2013, 16(2):228-235.
doi: 10.1016/j.pbi.2013.01.005 URL |
[43] |
Sun X, Zhang Z, Wu J, et al. The Oryza sativa regulator HDR1 associates with the Kinase OsK4 to control photoperiodic flowering[J]. PLoS Genetics, 2016, 12(3):e1005927.
doi: 10.1371/journal.pgen.1005927 URL |
[44] |
Yang J, Lee S, Hang R L, et al. OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice[J]. Plant Journal, 2013, 73(4):566-578.
doi: 10.1111/tpj.2013.73.issue-4 URL |
[45] |
He Y. Control of the transition to flowering by chromatin modifications[J]. Molecular Plant, 2009, 2(4):554-564.
doi: 10.1093/mp/ssp005 URL |
[46] |
He Y. Chromatin regulation of flowering[J]. Trends in Plant Science, 2012, 17(9):556-562.
doi: 10.1016/j.tplants.2012.05.001 URL |
[47] |
He Y, Amasino R M. Role of chromatin modification in flowering-time control[J]. Trends in Plant Science, 2005, 10(1):30-35.
doi: 10.1016/j.tplants.2004.11.003 URL |
[48] |
Yang L, Conway S R, Poethig R S. Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156[J]. Development, 2011, 138(2):245-249.
doi: 10.1242/dev.058578 pmid: 21148189 |
[49] | Shi J, Dong A, Shen W H. Epigenetic regulation of rice flowering and reproduction[J]. Frontiers in Plant Science, 2015, 5. |
[50] |
Sun C H, Fang J, Zhao T L, et al. The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice[J]. Plant Cell, 2012, 24(8):3235-3247.
doi: 10.1105/tpc.112.101436 URL |
[51] |
Sui P F, Shi J L, Gao X Y, et al. H3K36 methylation is involved in promoting rice flowering[J]. Molecular Plant, 2013, 6(3):975-977.
doi: 10.1093/mp/sss152 URL |
[1] | ZHOU Dongdong, ZHANG Jun, GE Mengjie, LIU Zhonghong, ZHU Xiaohuan, LI Chunyan. Effects of Different Nitrogen Treatments on Grain Yield, Nitrogen Utilization Efficiency and Quality of Late-sowing Wheat ‘Huaimai 36’ Following Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 1-7. |
[2] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[3] | LUO Xianfu, LIU Wenqiang, PAN Xiaowu, DONG Zheng, LIU Sanxiong, LIU Licheng, YANG Biaoren, SHENG Xinnian, LI Xiaoxiang. Mapping of Plant Height QTL Using NILs Derived from Residual Heterozygous Lines in Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 1-5. |
[4] | ZHANG Shuangyan, REN Hao, DING Wenqing, WU Yutao. Research Progress on Material Utilization of Agricultural Waste Rice Husk [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 101-108. |
[5] | HUANG Yu, CHEN Bin, XIAO Guanli. The Physiological Response of the Local Rice Variety of ‘Acuce’ of Hani Nationality in Yunnan Against the Feeding of Nilaparvata lugens Stål [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 123-129. |
[6] | SHI Yonghai, CAO Xiangde, XU Jiabo. Effect of COVID-19 Epidemic on Alosa sapidissima Production in China and the Countermeasures [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 151-156. |
[7] | LI Xinghua, WANG Huan, ZHANG Sheng, CAI Xingxing, ZHOU Qiang, ZHOU Nan. Nitrogen Application Rate and Mode: Effects on Yield and Dry Matter Accumulation and Transport After Flowering of Late Indica Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 6-13. |
[8] | YE Pei, LIU Kequn, SHEN Shuanghe, LIU Kaiwen, LIU Zhixiong, DENG Yanjun. Risk Analysis and Regionalization of Heat Damage During Heading and Flowering Stage of Mid-season Rice in Hubei Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 110-117. |
[9] | WANG Yifan, LAO Xiaocan, YU Liping, YE Hailong. Rice Variety ‘Yongyou 15’: The Suitability of Meteorological Conditions for Sowing by Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 106-109. |
[10] | LIU Xiaohang, MA Shuqing, ZHAO Jing, QUAN Hujie, DENG Kuicai, CHAI Qingrong. Yield Response of Japonica Rice of Northeast China to Low Temperature in Different Time Periods of Booting Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 91-98. |
[11] | LI Xuefeng, WANG Jian, YE Xiaoyuan, ZHANG Xiuting, WANG Lixue. Plant Aqueous Extract of Momordica charantia: Effects on Rice Seed Germination and Seedling Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 1-7. |
[12] | YAN Yuntao, HE Xi, ZHANG Haiqing, HE Jiwai. Advances in Research on the Storability of Rice Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 1-8. |
[13] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
[14] | LIU Yuting, HUANG Shiyu, LI Liujia, ZHAO Tianzhang, LI Huiying, SU Zifeng, LONG Xiaowen. Comparative Study on Biological Indexes and Meat Nutritional Value of Cyprinus carpio Under Earth Pond Reared Mode and Rice Field Reared Mode [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 159-164. |
[15] | HU Ping, FENG Minyu, WU Fengyu, CAO Heyu. Suitable Sowing Temperature for Direct Seeding Early Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 70-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||