
Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (16): 34-41.doi: 10.11924/j.issn.1000-6850.casb20200200116
Special Issue: 生物技术
• Research article • Previous Articles Next Articles
					
													Ye Ruobai1,2( ), Wu Zhenhong3, Miao Xiaoqing1,3,*(
), Wu Zhenhong3, Miao Xiaoqing1,3,*( )
)
												  
						
						
						
					
				
Received:2020-02-17
															
							
																	Revised:2020-04-18
															
							
															
							
																	Online:2020-06-05
															
							
																	Published:2020-05-20
															
						Contact:
								Miao Xiaoqing   
																	E-mail:354650728@qq.com;mxqsf88@126.com
																					CLC Number:
Ye Ruobai, Wu Zhenhong, Miao Xiaoqing. Design and Bioactivity Evaluation of Long-effective Modified Melittin (GPG) with Antitumor and Antibacterial Function[J]. Chinese Agricultural Science Bulletin, 2020, 36(16): 34-41.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20200200116
| 设计序列号 | 设计多肽的氨基酸序列 | 简记 | 整体结构参数 | ||||
|---|---|---|---|---|---|---|---|
| 净正电荷数 | 疏水力矩 | 疏水性 | α-螺旋度 | 两亲性 | |||
| 1 | RGDSFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.420 | 0.320 | 50.0 | 是 | |
| 2 | GRGDSPFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.557 | 0.596 | 66.7 | 是 | |
| 3 | GRGDSPSFLHLAKKPGKAFPAVLKVLTTG | +4 | 0.572 | 0.526 | 61.1 | 是 | |
| 4 | RGDFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.557 | 0.596 | 66.7 | 是 | |
| 5 | GRGDSPKFLHSAKKFGKAFPAVLKVLTTG | GPG | +5 | 0.565 | 0.377 | 58.0 | 是 | 
| 6 | GRGDSPKFLHLAKKFGKAFIGIAVLKVLTTG | +5 | 0.451 | 0.594 | 38.9 | 是 | |
| 7 | GRGDSPKFLHSAKKFGKAFIGIAVLKVLTTG | +5 | 0.439 | 0.497 | 44.4 | 是 | |
| 8 | RGDKFLHLAKKFGKAFIGIAVLKVLTTG | +5 | 0.451 | 0.594 | 38.9 | 是 | |
| 9 | RGDKFLHSAKKFGKAFIGIAVLKVLTTG | +5 | 0.439 | 0.497 | 55.6 | 是 | |
| 10 | RGDKFLHLAKKFGKAFPAVLKVLTTG | +5 | 0.589 | 0.473 | 38.9 | 是 | |
| 11 | GRGDSPKFLHLAKKFGKAFPAVLKVLTTG | +5 | 0.589 | 0.473 | 38.9 | 是 | |
| 12 | GRGDSPKWKLFKKIPAVLKVLTTG | +5 | 0.395 | 0.554 | 44.4 | 是 | |
| 13 | RGDKWKLFKKIEKVGQPAVLKVLTTGL | +5 | 0.283 | 0.328 | 50.0 | 是 | |
| 14 | GRGDSPKWKLFKKIEKVGQPAVLKVLTTGL | +5 | 0.283 | 0.328 | 50.0 | 是 | |
| 15 | GRGDSPKFLHSAKKFKAFMMEAVLKVLTT | +5 | 0.239 | 0.528 | 61.1 | 是 | |
| 16 | RGDKFLHSAKKFKAFMMEAVLKVLTT | +5 | 0.214 | 0.432 | 44.4 | 是 | |
| 17 | RGDKWKLFKKIPKFLHLAKKF | RP18 | +7 | 0.333 | 0.332 | 52.4 | 是 | 
| 18 | RGDKWKLFKKIIGIKFLHSAKKF | +7 | 0.202 | 0.505 | 50.0 | 是 | |
| 19 | GRGDSPKWKLFKKIIGIKFLHLAKKF | +7 | 0.298 | 0.602 | 44.4 | 是 | |
| 20 | RGDKFLHSAKKFGKAFPAVLKVLTTG | RPG | +5 | 0.392 | 0.448 | 50.0 | 是 | 
| 21 | RGDKWKLFKKIPAVLKVLTTG | RCAG | +5 | 0.395 | 0.554 | 44.4 | 是 | 
| 设计序列号 | 设计多肽的氨基酸序列 | 简记 | 整体结构参数 | ||||
|---|---|---|---|---|---|---|---|
| 净正电荷数 | 疏水力矩 | 疏水性 | α-螺旋度 | 两亲性 | |||
| 1 | RGDSFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.420 | 0.320 | 50.0 | 是 | |
| 2 | GRGDSPFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.557 | 0.596 | 66.7 | 是 | |
| 3 | GRGDSPSFLHLAKKPGKAFPAVLKVLTTG | +4 | 0.572 | 0.526 | 61.1 | 是 | |
| 4 | RGDFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.557 | 0.596 | 66.7 | 是 | |
| 5 | GRGDSPKFLHSAKKFGKAFPAVLKVLTTG | GPG | +5 | 0.565 | 0.377 | 58.0 | 是 | 
| 6 | GRGDSPKFLHLAKKFGKAFIGIAVLKVLTTG | +5 | 0.451 | 0.594 | 38.9 | 是 | |
| 7 | GRGDSPKFLHSAKKFGKAFIGIAVLKVLTTG | +5 | 0.439 | 0.497 | 44.4 | 是 | |
| 8 | RGDKFLHLAKKFGKAFIGIAVLKVLTTG | +5 | 0.451 | 0.594 | 38.9 | 是 | |
| 9 | RGDKFLHSAKKFGKAFIGIAVLKVLTTG | +5 | 0.439 | 0.497 | 55.6 | 是 | |
| 10 | RGDKFLHLAKKFGKAFPAVLKVLTTG | +5 | 0.589 | 0.473 | 38.9 | 是 | |
| 11 | GRGDSPKFLHLAKKFGKAFPAVLKVLTTG | +5 | 0.589 | 0.473 | 38.9 | 是 | |
| 12 | GRGDSPKWKLFKKIPAVLKVLTTG | +5 | 0.395 | 0.554 | 44.4 | 是 | |
| 13 | RGDKWKLFKKIEKVGQPAVLKVLTTGL | +5 | 0.283 | 0.328 | 50.0 | 是 | |
| 14 | GRGDSPKWKLFKKIEKVGQPAVLKVLTTGL | +5 | 0.283 | 0.328 | 50.0 | 是 | |
| 15 | GRGDSPKFLHSAKKFKAFMMEAVLKVLTT | +5 | 0.239 | 0.528 | 61.1 | 是 | |
| 16 | RGDKFLHSAKKFKAFMMEAVLKVLTT | +5 | 0.214 | 0.432 | 44.4 | 是 | |
| 17 | RGDKWKLFKKIPKFLHLAKKF | RP18 | +7 | 0.333 | 0.332 | 52.4 | 是 | 
| 18 | RGDKWKLFKKIIGIKFLHSAKKF | +7 | 0.202 | 0.505 | 50.0 | 是 | |
| 19 | GRGDSPKWKLFKKIIGIKFLHLAKKF | +7 | 0.298 | 0.602 | 44.4 | 是 | |
| 20 | RGDKFLHSAKKFGKAFPAVLKVLTTG | RPG | +5 | 0.392 | 0.448 | 50.0 | 是 | 
| 21 | RGDKWKLFKKIPAVLKVLTTG | RCAG | +5 | 0.395 | 0.554 | 44.4 | 是 | 
| 多肽浓度 | GPG | RPG | RP18 | RCAG | 
|---|---|---|---|---|
| 150.00 μmol/L | 0 | 0 | 4.0±0.2 | 0 | 
| 75.00 μmol/L | 0 | 0 | 1.8±0.2 | 0 | 
| 37.50 μmol/L | 0 | 0 | 0.2±0.1 | 0 | 
| 18.75 μmol/L | 0 | 0 | 0 | 0 | 
| 9.38 μmol/L | 0 | 0 | 0 | 0 | 
| 4.69 μmol/L | 0 | 0 | 0 | 0 | 
| 多肽浓度 | GPG | RPG | RP18 | RCAG | 
|---|---|---|---|---|
| 150.00 μmol/L | 0 | 0 | 4.0±0.2 | 0 | 
| 75.00 μmol/L | 0 | 0 | 1.8±0.2 | 0 | 
| 37.50 μmol/L | 0 | 0 | 0.2±0.1 | 0 | 
| 18.75 μmol/L | 0 | 0 | 0 | 0 | 
| 9.38 μmol/L | 0 | 0 | 0 | 0 | 
| 4.69 μmol/L | 0 | 0 | 0 | 0 | 
| 多肽浓度 | 对H22抑癌率 | 对SMMC-7721抑癌率 | 对SW-1116抑癌率 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| GPG | RPG | RP18 | RCAG | GPG | RPG | RP18 | RCAG | GPG | RPG | RP18 | RCAG | |||
| 33.3 μmol/L | 78.0±0.6 | 74.0±1.4 | 71.0±1.4 | 70.0±1.0 | 74.0±1.2 | 72.0±1.3 | 71.0±1.6 | 70.0±1.3 | 74.0±0.5 | 72.0±1.6 | 72.0±1.5 | 71.0±1.6 | ||
| 16.7 μmol/L | 56.0±0.9 | 51.3±1.2 | 48.5±1.1 | 48.1±1.1 | 51.0±1.6 | 49.6±1.5 | 47.2±1.5 | 46.7±0.8 | 50.0±1.5 | 48.3±1.2 | 48.5±1.4 | 47.9±1.4 | ||
| 8.3 μmol/L | 32.0±1.4 | 26.5±1.4 | 24.7±1.4 | 24.4±0.8 | 25.0±1.3 | 24.2±1.4 | 22.3±1.4 | 21.9±1.4 | 22.5±1.4 | 20.6±1.5 | 22.0±1.4 | 21.9±1.7 | ||
| 4.2 μmol/L | 20.1±1.6 | 15.4±1.5 | 12.6±1.0 | 12.4±1.0 | 13.5±1.0 | 11.7±1.2 | 10.5±1.3 | 10.3±1.4 | 10.7±0.6 | 9.8±0.8 | 11.1±0.5 | 11.0±0.8 | ||
| 2.1 μmol/L | 3.0±1.1 | 1.7±0.8 | 0.9±0.6 | 0.8±0.4 | 1.2±0.6 | 0.8±0.6 | 0.7±0.4 | 0.7±0.5 | 0.8±0.4 | 0.6±0.3 | 0.7±0.3 | 0.7±0.7 | ||
| 多肽浓度 | 对H22抑癌率 | 对SMMC-7721抑癌率 | 对SW-1116抑癌率 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| GPG | RPG | RP18 | RCAG | GPG | RPG | RP18 | RCAG | GPG | RPG | RP18 | RCAG | |||
| 33.3 μmol/L | 78.0±0.6 | 74.0±1.4 | 71.0±1.4 | 70.0±1.0 | 74.0±1.2 | 72.0±1.3 | 71.0±1.6 | 70.0±1.3 | 74.0±0.5 | 72.0±1.6 | 72.0±1.5 | 71.0±1.6 | ||
| 16.7 μmol/L | 56.0±0.9 | 51.3±1.2 | 48.5±1.1 | 48.1±1.1 | 51.0±1.6 | 49.6±1.5 | 47.2±1.5 | 46.7±0.8 | 50.0±1.5 | 48.3±1.2 | 48.5±1.4 | 47.9±1.4 | ||
| 8.3 μmol/L | 32.0±1.4 | 26.5±1.4 | 24.7±1.4 | 24.4±0.8 | 25.0±1.3 | 24.2±1.4 | 22.3±1.4 | 21.9±1.4 | 22.5±1.4 | 20.6±1.5 | 22.0±1.4 | 21.9±1.7 | ||
| 4.2 μmol/L | 20.1±1.6 | 15.4±1.5 | 12.6±1.0 | 12.4±1.0 | 13.5±1.0 | 11.7±1.2 | 10.5±1.3 | 10.3±1.4 | 10.7±0.6 | 9.8±0.8 | 11.1±0.5 | 11.0±0.8 | ||
| 2.1 μmol/L | 3.0±1.1 | 1.7±0.8 | 0.9±0.6 | 0.8±0.4 | 1.2±0.6 | 0.8±0.6 | 0.7±0.4 | 0.7±0.5 | 0.8±0.4 | 0.6±0.3 | 0.7±0.3 | 0.7±0.7 | ||
| [1] | Lin J, Xia L, Liang J , et al. The roles of glucose metabolic reprogramming in chemo- and radio-resistance[J]. J Exp Clin Cancer Res, 2019; 38(1):218-230. | 
| [2] | Masson F, Zaidman-Rémy A, Heddi A . Antimicrobial peptides and cell processes tracking endosymbiont dynamics[J]. Philoso- phical Transactions of the Royal Society B: Biological Sciences, 2016,371:1-9. | 
| [3] | Moravej H, Moravej Z, Yazdanparast M , et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria[J]. Microbial Drug Resistance, 2018,24(6):747-767. doi: 10.1089/mdr.2017.0392 URL | 
| [4] | Liu M Y, Liu S S, Fu C , et al. Design and antitumor activity of novel antitumor peptide RGD-T-La(FS) chimera from catesbeiana[J]. Chin J Vet Sci Jan, 2018,38(1):39-50. | 
| [5] | Li J G, Liu S P, Lakshminarayanan R , et al. Molecular simulation suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability[J]. Biochimica et Biophysica Acta, 2013,1828(3):1112-1121. | 
| [6] | Nada I, Mario N, Filomena G , et al. Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences[J]. Biochimica et Biophysica Acta, 2013,1828(3):1004-1012. | 
| [7] | Brown K L , Poon G F T, Birkenhead D,et al. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses[J]. Journal of Immunology, 2011,186(9):5497-5505. doi: 10.4049/jimmunol.1002508 URL | 
| [8] | Wu R J, Wang Q, Zheng Z J , et al. Design, characterization and expression of a novel hybrid peptides melittin(1-13)-LL37(17-30)[J]. Molecular Biology Reports, 2014,41(7):4163-4169. doi: 10.1007/s11033-013-2900-0 URL | 
| [9] | 李莉, 张云, 倪京满 . 抗肿瘤活性的新型高效细胞穿膜肽[Cys-CPT2,9] penetratin的设计及活性评价 [J]. 药学学报, 2017,52(5):802-808. | 
| [10] | 管玉霞, 罗泓, 王锡平 . 穿膜肽TAT-PTD的固相合成及其与DNA相互作用的研究[J]. 中山大学学报:自然科学版, 2010,49(Z1):94-98. | 
| [11] | Xi D, Teng D, Wang X , et al. Design, expression and characterization of the hybrid antimicrobial peptide LHP7, connected by a flexible linker, against staphylococcus and stereptococcus[J]. Process Biochemistry, 2013,48(3):453-461. doi: 10.1016/j.procbio.2013.01.008 URL | 
| [12] | 葛璐, 邱立朋, 单晓甜 , 等. Heparosan多糖聚合物胶束的制备及体外抗肿瘤活性[J]. 药学学报, 2018,53(4):621-629. | 
| [13] | 周丽娜, 王莉莉, 张永娜 , 等. 2株放线菌的抗菌活性及分类学地位[J]. 中国农学通报, 2015,31(11):182-189. | 
| [14] | 杨霞, 张殿卿, 宋佳玮 , 等. 合成绵羊抗菌肽NK-Lysin抗菌活性及其对雏鸡沙门氏菌攻毒的治疗效果研究[J]. 中国畜牧兽医, 2017,44(9):2739-2746. | 
| [15] | Dutta P, Das S . Mammalian Antimicrobial peptides: promising therapeutic targets against infection and chronic inflammation[J]. Curr Top Med Chem, 2016,16(1):99-129. doi: 10.2174/1568026615666150703121819 URL | 
| [16] | Hasan M , Moghal M M R, Saha S K, et al. The role of membrane tension in the action of antimicrobial peptides and cell-penetrating peptides in biomembranesn[J]. Biophys Rev, 2019,11(3):431-448. | 
| [17] | Kumar P, Kizhakkedathu J N, Straus S K . Antimicrobial peptides: diversity, mechanism of action and strate gies to improve the activity and biocompatibility in vivo[J]. Biomolecules, 2018; 8(1):4-27. doi: 10.3390/biom8010004 URL | 
| [18] | Raid A A, Yazeed A S, Ayesha M , et al. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains[J]. Saudi Journal of Biological Sciences, 2014,21(2):147-151. doi: 10.1016/j.sjbs.2013.09.003 URL | 
| [19] | Vermeer L S, Lan Y, Abbate V , et al. Conformational flexibility determines selectivity and antibacterial, antiplasmodial,and anticancer potency of cationic α-helical peptides[J]. J Biol Chem, 2012,287(41):34120-34133. doi: 10.1074/jbc.M112.359067 URL | 
| [20] | Nan Y H, Park K H, Park Y , et al. Investigating the effects of positive charge and hydrophobicity on the cell selectivity mechanism of action and anti-innammatory activity of a try-rich antimicrobial peptide indolicidin[J]. FEMS Microbiol lett, 2009,292(1):134-140. doi: 10.1111/fml.2009.292.issue-1 URL | 
| [21] | Shi W, Li C Y, Li M , et al. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice[J]. Appl Microbiol Biotechnol, 2016,100(11) : 5059-5067. doi: 10.1007/s00253-016-7400-4 URL | 
| [22] | Gabriela C V B, Viviane N, Suzanna F R , et al. Characterization of peptides from capsicum annuum hybrid seeds with inhibitory activity against α-amylase, serine proteinases and fungi[J]. The Protein Journal, 2015,34(2):122-129. | 
| [23] | Hashimoto S, Taguchi S . Activity improvement of antimicrobial peptides by a chemical modification approach: toward the creation of novel types of antimicrobial agents[J]. Mini-reviews In Organic Chemistry, 2010,7(4):282-289. doi: 10.2174/157019310792246373 URL | 
| [24] | Choi N, Kim S M, Hong K S , et al. The use of the fusion protein RGD-HAS-TIMP2 as a tumor targeting imaging probe for SPECT and PET[J]. Biomaterials, 2011,32(29):7151-7158. doi: 10.1016/j.biomaterials.2011.06.007 URL | 
| [25] | Powers D B, Amersdorfer P, Powl M , et al. Expression of single-chain Fv-Fcfusions in Pichia pastoris[J]. J Immunol Methods, 2001,251(122):123-135. doi: 10.1016/S0022-1759(00)00290-8 URL | 
| [26] | Maccari G, Di L M, Nifosí R , et al. Antimicrobial peptides design by evolutionary multiobjective optimization[J]. PLoS Comput Biol, 2013,9(9):1-12. | 
| [27] | Zelezetsky I, Tossi A . Alpha-helical antimicrobial peptides- using a sequence template to guide structure activity relationship studies[J]. Biochim Bioph Acta(BBA)-Biomembr, 2006,1758(9):1436-1449. | 
| [28] | 黄宜兵, 翟乃翠, 高贵 , 等. 净电荷对螺旋型抗癌肽生物活性的影响[J]. 高等学校化学学报, 2012,33(6):1252-1258. doi: 10.3969/j.issn.0251-0790.2012.06.022 URL | 
| [29] | Oren Z, Shai Y . Mode of action of linear amphipathic alpha-helical antimicrobial peptides[J]. Biopolymers, 1998,47(6):451-463. doi: 10.1002/(SICI)1097-0282(1998)47:6<>1.0.CO;2-W URL | 
| [30] | Dathe M, Nikolenko H, Meyer J , et al. Optimization of the antimicrobial activity of magainin peptides by modification of charge[J]. FEBS Lett, 2001,501:146-150. doi: 10.1016/S0014-5793(01)02648-5 URL | 
| [1] | SUI Zhenquan, FAN Jinshi, YIN Chongshan, MAO Jinchao. Chitosan: The Action Mechanism on Plant Pathogens and Its Influencing Factors [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 121-126. | 
| [2] | QUAN Ying, ZHANG Xiaojuan, ZHAO Hui, SUN Xiaomin, MA Xiuqi. CRISPER/Cas9 System in Plant Genome Modification and Crop Genetics and Breeding: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 9-14. | 
| [3] | SI Lu, WU Tong, ZHEN Jincheng, YU Hongjia, LIU Yao, YANG Xiao, XU Lijian. Isolation, Identification and Activity Screening of Culturable Fungi from Litter in the Greater Hinggan Mountains [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 118-123. | 
| [4] | Zhang Zhedong, Liang Jing, Li Zeyu, Gao Siyu, Qiu Tianyi, Shan Tijiang, Xu Lijian. Litter Fungi in the Boreal Forests and Their Antibacterial Compounds in the Greater Khingan Mountains [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 104-110. | 
| [5] | Han Lixia, Wei Shengke, Feng Wenjuan. Gliotoxin Waste Mycelium: Antibacterial Activity and Its Application [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 106-110. | 
| [6] | Zhou Yan, Zhang Cong, Zhao Dandan. Structure Modification of Edible Fungi Polysaccharides and Their Antitumor Activities: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(6): 89-92. | 
| [7] | Liu Lin, Ruan Renwen, Zhang Rui, Wang Qiang, Ma Xiling, Li Shanshan, Fan Shuying. Extracts of Brassica juncea: Antibacterial Activity to Watermelon Fusarium Wilt and Antibacterial Spectrum Determination [J]. Chinese Agricultural Science Bulletin, 2020, 36(4): 130-134. | 
| [8] | Li Wenfen, Sun Ruige, Wang Bo. Antibacterial and Antioxidant Effects of Ultrasound Extract of Glycyrrhiza uralensis [J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 123-126. | 
| [9] | Zhang Chen, Wang Wencui, Bai Lu, Shi Shulian, Yao Lei. Chemical Composition and Antimicrobial Activity of the Essential Oil of Artemisia Sieversiana in Ningxia [J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 62-68. | 
| [10] | Cong Yunzhe, Ma Qunfei, Yang Wenhui, Chen Kaoshan. Control of Alternaria alternata by Mixed Fermentation of Trichoderma pseudokoningii and Rhizopus nigrican [J]. Chinese Agricultural Science Bulletin, 2020, 36(19): 121-126. | 
| [11] | . Endophytes with Antibacterial Activity Separated from Ficus microcarpa: Optimization of Fermentation Conditions [J]. Chinese Agricultural Science Bulletin, 2019, 35(8): 17-22. | 
| [12] | 李泽宇,,邱天艺 and . Fungi from Forest Litters of the Greater Khingan Mountains and Their Secondary Metabolites’Activities [J]. Chinese Agricultural Science Bulletin, 2019, 35(29): 103-108. | 
| [13] | 张敏瑜,齐延林,杨弘华,严章雪 and 汪波. Optimized Extraction Condition of Lentinan and Its Antibacterial and Antioxidant Activity [J]. Chinese Agricultural Science Bulletin, 2016, 32(11): 39-42. | 
| [14] | . Effects of Burning Smoke of Several Tibetan Incense Ingredients on the Antibacterial Activity of Penicillium sp. and Aspergillus sp. [J]. Chinese Agricultural Science Bulletin, 2014, 30(9): 253-258. | 
| [15] | . Soybean Molecular Breeding: Current Status, Challenges and Perspectives [J]. Chinese Agricultural Science Bulletin, 2014, 30(6): 33-39. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||