Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (3): 121-126.doi: 10.11924/j.issn.1000-6850.casb2021-0240
Previous Articles Next Articles
SUI Zhenquan1(), FAN Jinshi1,2(
), YIN Chongshan3, MAO Jinchao1
Received:
2021-03-20
Revised:
2021-06-13
Online:
2022-01-25
Published:
2022-02-25
Contact:
FAN Jinshi
E-mail:944989960@qq.com;chemfan@qust.edu.cn
CLC Number:
SUI Zhenquan, FAN Jinshi, YIN Chongshan, MAO Jinchao. Chitosan: The Action Mechanism on Plant Pathogens and Its Influencing Factors[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 121-126.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0240
[1] |
ABBASZADEH S, RASHIDIPOUR M, KHOSRAVI P, et al. Biocompatibility, cytotoxicity, antimicrobial and epigenetic effects of novel chitosan-based quercetin nanohydrogel in human cancer cells[J]. International journal of nanomedicine, 2020, 15:5963-5975.
doi: 10.2147/IJN.S263013 URL |
[2] |
ZIMET P, MOMBRU A W, MOMBRU D, et al. Physico-chemical and antilisterial properties of nisin-incorporated chitosan/carboxymethyl chitosan films[J]. Carbohydr polym, 2019, 219:334-343.
doi: 10.1016/j.carbpol.2019.05.013 URL |
[3] |
WARDHANI R A K, ASRI L, RACHMAWATI H, et al. Physical-chemical crosslinked electrospun colocasia esculenta tuber protein-chitosan-poly (ethylene oxide) nanofibers with antibacterial activity and cytocompatibility[J]. International journal of nanomedicine, 2020, 15:6433-6449.
doi: 10.2147/IJN.S261483 URL |
[4] |
TORRES-ROSAS R, TORRES-GOMEZ N, MORENO-RODRIGUEZ A, et al. Anti-inflammatory and antibacterial activity of the chitosan/chlorhexidine gel commercial preparation for postexodontia treatment: an in vitro study[J]. European journal of dentistry, 2020, 14(3):397-403.
doi: 10.1055/s-0040-1714453 URL |
[5] |
DOAN C T, TRAN T N, NGUYEN V B, et al. Bioprocessing of squid pens waste into chitosanase by Paenibacillus sp. tku047 and its application in low-molecular weight chitosan oligosaccharides production[J]. Polymers (Basel), 2020, 12(5):1163-1179.
doi: 10.3390/polym12051163 URL |
[6] | SHAHINI SHAMS ABADI M, MIRZAEI E, BAZARGANI A, et al. Antibacterial activity and mechanism of action of chitosan nanofibers against toxigenic clostridioides (clostridium) difficile isolates[J]. Annali di igiene: medicina preventiva e dicomunità, 2020, 32(1):72-80. |
[7] |
REZAZADEH N H, BUAZAR F, MATROODI S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles[J]. Scientific reports, 2020, 10(1):19615-19628.
doi: 10.1038/s41598-020-76726-7 URL |
[8] |
WALCZAK K, SCHIERZ G, BASCHE S, et al. Antifungal and surface properties of chitosan-salts modified PMMA denture base material[J]. Molecules, 2020, 25(24):5899-5910.
doi: 10.3390/molecules25245899 URL |
[9] |
YUAN X, ZHENG J, JIAO S, et al. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production[J]. Carbohydr polym, 2019, 220:60-70.
doi: 10.1016/j.carbpol.2019.05.050 URL |
[10] |
ABDALLAH Y, LIU M, OGUNYEMI S O, et al. Bioinspired green synjournal of chitosan and zinc oxide nanoparticles with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae[J]. Molecules, 2020, 25(20):4795-4813.
doi: 10.3390/molecules25204795 URL |
[11] |
SINGH R K, MARTINS V, SOARES B, et al. Chitosan application in vineyards (Vitis vinifera L. cv. Tinto Cao) induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes[J]. International journal of molecular sciences, 2020, 21(1):306-316.
doi: 10.3390/ijms21010306 URL |
[12] |
ABD EL-HACK M E, EL-SAADONY M T, SHAFI M E, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review[J]. International journal of biological macromolecules, 2020, 164:2726-2744.
doi: 10.1016/j.ijbiomac.2020.08.153 URL |
[13] |
LI J, ZHUANG S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives[J]. European polymer journal, 2020, 138:109984-109996.
doi: 10.1016/j.eurpolymj.2020.109984 URL |
[14] |
ALVEN S, ADERIBIGBE B A. Chitosan and cellulose-based hydrogels for wound management[J]. International journal of molecular sciences, 2020, 21(24):9656-9685.
doi: 10.3390/ijms21249656 URL |
[15] |
KATAS H, LIM C S, NOR AZLAN A Y H, et al. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from lignosus rhinocerotis and chitosan[J]. Saudi pharmaceutical journal, 2019, 27(2):283-292.
doi: 10.1016/j.jsps.2018.11.010 URL |
[16] |
ALQAHTANI F, ALEANIZY F, EL TAHIR E, et al. Antibacterial activity of chitosan nanoparticles against pathogenic N. gonorrhoea[J]. International journal of nanomedicine, 2020, 15:7877-7887.
doi: 10.2147/IJN.S272736 URL |
[17] |
WU D, WAN J, LU J, et al. Chitosan coatings on lecithin stabilized emulsions inhibit mycotoxin production by Fusarium pathogens[J]. Food control, 2018, 92:276-285.
doi: 10.1016/j.foodcont.2018.05.009 URL |
[18] |
SAITO H, SAKAKIBARA Y, SAKATA A, et al. Antibacterial activity of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa, Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus[J]. PLoS one, 2019, 14(5):e0217504-0217526.
doi: 10.1371/journal.pone.0217504 URL |
[19] |
CHANDRASEKARAN M, KIM K D, CHUN S C. Antibacterial activity of chitosan nanoparticles: a review[J]. Processes, 2020, 8(9):1173-1194.
doi: 10.3390/pr8091173 URL |
[20] |
JAMSHIDI D, SAZEGAR M R. Antibacterial activity of a novel biocomposite chitosan/graphite based on Zinc-grafted mesoporous silica nanoparticles[J]. International journal of nanomedicine, 2020, 15:871-883.
doi: 10.2147/IJN URL |
[21] |
LIU H, DU Y, YANG J, et al. Structural characterization and antimicrobial activity of chitosan/betaine derivative complex[J]. Carbohydrate polymers, 2004, 55(3):291-297.
doi: 10.1016/j.carbpol.2003.10.001 URL |
[22] |
VISHU KUMAR A B, VARADARAJ M C, GOWDA L R, et al. Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli[J]. Biochemical journal, 2005, 391(Pt 2):167-175.
doi: 10.1042/BJ20050093 URL |
[23] |
ZIENKIEWICZ-STRZALKA M, DERYLO-MARCZEWSKA A, SKORIK Y A, et al. Silver nanoparticles on chitosan/silica nanofibers: characterization and antibacterial activity[J]. International journal of molecular sciences, 2019, 21(1):166-185.
doi: 10.3390/ijms21010166 URL |
[24] |
ALAM O, QIAO X, NATH T K. The effect of Ca-bearing contents in chitosan on Pb (2+), Cd (2+) and Cu (2+) adsorption and its adsorption mechanism[J]. Journal of environmental health science and engineering, 2020, 18(2):1401-1414.
doi: 10.1007/s40201-020-00556-y URL |
[25] |
WEISSPFLOG J, GUNDEL A, VEHLOW D, et al. Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan[J]. Molecules, 2020, 25(11):2482-2496.
doi: 10.3390/molecules25112482 URL |
[26] | GRANDE-TOVAR C D, CHAVES-LOPEZ C, SERIO A, et al. Chitosan coatings enriched with essential oils: effects on fungi involved in fruit decay and mechanisms of action[J]. Trends in food science & technology, 2018, 78:61-71. |
[27] |
CHOUHAN D, MANDAL P. Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-a review[J]. International journal of biological macromolecules, 2021, 166:1554-1569.
doi: 10.1016/j.ijbiomac.2020.11.035 URL |
[28] | SUAREZ-FERNANDEZ M, MARHUENDA-EGEA F C, LOPEZ-MOYA F, et al. Chitosan induces plant hormones and defenses in tomato root exudates[J]. Frontiers in plant science, 2020, 11:1677-1691. |
[29] |
MANJUNATHA G, ROOPA K S, PRASHANTH G N, et al. Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation[J]. Pest management science, 2008, 64(12):1250-1257.
doi: 10.1002/ps.v64:12 URL |
[30] | YIN H, DU Y, DONG Z. Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors[J]. Frontiers in plant science, 2016, 7:522-526. |
[31] |
VARMA R, VASUDEVAN S. Extraction, characterization, and antimicrobial activity of chitosan from horse mussel modiolus modiolus[J]. ACS omega, 2020, 5(32):20224-20230.
doi: 10.1021/acsomega.0c01903 URL |
[32] |
ORELLANO M S, ISAAC P, BRESER M L, et al. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens[J]. Carbohydr polym, 2019, 213:1-9.
doi: 10.1016/j.carbpol.2019.02.016 URL |
[33] |
CHEN Y L, CHOU C C. Factors affecting the susceptibility of Staphylococcus aureus CCRC 12657 to water soluble lactose chitosan derivative[J]. Food microbiology, 2005, 22(1):29-35.
doi: 10.1016/j.fm.2004.05.005 URL |
[34] |
ABID S, HUSSAIN T, NAZIR A, et al. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management[J]. International journal of biological macromolecules, 2019, 135:1222-1236.
doi: 10.1016/j.ijbiomac.2019.06.022 URL |
[35] |
TAKAHASHI T, IMAI M, SUZUKI I, et al. Growth inhibitory effect on bacteria of chitosan membranes regulated with deacetylation degree[J]. Biochemical engineering journal, 2008, 40(3):485-491.
doi: 10.1016/j.bej.2008.02.009 URL |
[36] | BYUN S M, NO H K, HONG J H, et al. Comparison of physicochemical, binding, antioxidant and antibacterial properties of chitosans prepared from ground and entire crab leg shells[J]. International journal of food science & technology, 2012, 48(1):136-142. |
[37] |
SAHARIAH P, CIBOR D, ZIELINSKA D, et al. The Effect of molecular weight on the antibacterial activity of N,N,N-trimethyl chitosan (TMC)[J]. International journal of molecular sciences, 2019, 20(7):1743-1756.
doi: 10.3390/ijms20071743 URL |
[38] |
MORIN-CRINI N, LICHTFOUSE E, TORRI G, et al. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry[J]. Environmental chemistry letters, 2019, 17(4):1667-1692.
doi: 10.1007/s10311-019-00904-x URL |
[39] |
GARCIA L G S, GUEDES G M M, SILVA M L Q, et al. Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm[J]. Carbohydr polym, 2018, 195:662-669.
doi: 10.1016/j.carbpol.2018.04.091 URL |
[40] |
ZHENG L Y, ZHU J F. Study on antimicrobial activity of chitosan with different molecular weights[J]. Carbohydrate polymers, 2003, 54(4):527-530.
doi: 10.1016/j.carbpol.2003.07.009 URL |
[41] |
KAPPEL L, MUNSTERKOTTER M, SIPOS G, et al. Chitin and chitosan remodeling defines vegetative development and trichoderma biocontrol[J]. PLoS pathog, 2020, 16(2):e1008320-1008356.
doi: 10.1371/journal.ppat.1008320 URL |
[42] |
SANTOS V P, MARQUES N S S, MAIA P, et al. Seafood waste as attractive source of chitin and chitosan production and their applications[J]. International journal of molecular sciences, 2020, 21(12):4290-4306.
doi: 10.3390/ijms21124290 URL |
[43] |
AL-HMOUD L, ABU FARA D, RASHID I, et al. Influence of chitin source and polymorphism on powder compression and compaction: application in drug delivery[J]. Molecules, 2020, 25(22):5269-5291.
doi: 10.3390/molecules25225269 URL |
[44] |
CHIEN R C, YEN M T, MAU J L. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells[J]. Carbohydr polym, 2016, 138:259-264.
doi: 10.1016/j.carbpol.2015.11.061 URL |
[45] |
CHANG A K T, FRIAS R R, ALVAREZ L V, et al. Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp.[J]. Biocatalysis and agricultural biotechnology, 2019, 17:189-195.
doi: 10.1016/j.bcab.2018.11.016 URL |
[46] |
BABII O, WANG Z, LIU G, et al. Low molecular weight chitosan nanoparticles for CpG oligodeoxynucleotides delivery: impact of molecular weight, degree of deacetylation, and mannosylation on intracellular uptake and cytokine induction[J]. International journal of biological macromolecules, 2020, 159:46-56.
doi: 10.1016/j.ijbiomac.2020.05.048 URL |
[47] |
CHIEN P J, CHOU C C. Antifungal activity of chitosan and its application to control post-harvest quality and fungal rotting of tankan citrus fruit (Citrus tankan Hayata)[J]. Journal of the science of food and agriculture, 2006, 86(12):1964-1969.
doi: 10.1002/(ISSN)1097-0010 URL |
[48] |
TEAIMA M H, ELASALY M K, OMAR S A, et al. Eco-friendly synjournal of functionalized chitosan-based nanoantibiotic system for potential delivery of linezolid as antimicrobial agents[J]. Saudi pharmaceutical journal, 2020, 28(7):859-868.
doi: 10.1016/j.jsps.2020.06.005 URL |
[49] |
PIEGAT A, ZYWICKA A, NIEMCZYK A, et al. Antibacterial activity of N,O-acylated chitosan derivative[J]. Polymers (Basel), 2020, 13(1):107-119.
doi: 10.3390/polym13010107 URL |
[50] | TSAI G J, SU W H. Antibacterial activity of shrimp chitosan against Escherichia coli[J]. Journal of food proteation, 1999, 62(3):239-243. |
[51] |
ARDILA N, DAIGLE F, HEUZEY M C, et al. Effect of chitosan physical form on its antibacterial activity against pathogenic bacteria[J]. Journal of food science, 2017, 82(3):679-686.
doi: 10.1111/jfds.2017.82.issue-3 URL |
[52] |
NO H K, KIM S H, LEE S H, et al. Stability and antibacterial activity of chitosan solutions affected by storage temperature and time[J]. Carbohydrate polymers, 2006, 65(2):174-178.
doi: 10.1016/j.carbpol.2005.12.036 URL |
[1] | YAN Yue, JIN Hexian, WANG Lixian. Research on Health Benefits of Community Gardens at Home and Abroad: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 68-75. |
[2] | ZHOU Tingyu, XIAO Yang, HUANG Qingyang, XIE Chen, LUO You. Forest Litter Decomposition: Research Progress and Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 44-51. |
[3] | TIAN Yutong, HAN Zhiwei, ZHAO Ran, TIAN Yongzhu, LUO Guangfei, YANG Miao. Effects of Typical Land Use Types on Soil Nitrogen Characteristics in Karst Agricultural Areas of Southwest China [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 89-96. |
[4] | WANG Zhiqiang, YANG Jianfeng, SHI Tianchi. Copper Content Characteristics of Main Grain Crops and Their Influencing Factors in Shizuishan of Ningxia [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 45-54. |
[5] | WANG Qing, FANG Wensheng, LI Yuan, WANG Qiuxia, YAN Dongdong, CAO Aocheng. Advances in New Nematicides and Their Action Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 100-107. |
[6] | LOU Zhongshan. Phenological Change Characteristics of Stipa Grass at Flowering Stage on Alpine Grassland and Their Influencing Factors [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 129-134. |
[7] | QUAN Ying, ZHANG Xiaojuan, ZHAO Hui, SUN Xiaomin, MA Xiuqi. CRISPER/Cas9 System in Plant Genome Modification and Crop Genetics and Breeding: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 9-14. |
[8] | SI Lu, WU Tong, ZHEN Jincheng, YU Hongjia, LIU Yao, YANG Xiao, XU Lijian. Isolation, Identification and Activity Screening of Culturable Fungi from Litter in the Greater Hinggan Mountains [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 118-123. |
[9] | LIAO Yumeng, LI Zuran, ZU Yanqun, LIU Caixin. Migration Pathways of Heavy Metals in Plants and Influencing Factors: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 63-69. |
[10] | HU Jiesi, ZHANG Jianguo. The Influencing Factors of Scenic Beauty of Rural Waterfront Landscape Belt Based on SD-SBE Method: A Case Study of Quzhou Miaoyuan River [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 69-78. |
[11] | LUO Mei, GUO Long, FEI Kun, ZHANG Tianen, LI Chen, MA Youhua. Cultivated Land Quality: Improving Technologies and Their Application [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 76-81. |
[12] | LIAO Zhangbo, HE Yuanlan, MO Shendai. The Effect of Meteorological Factors on Sugarcane Yield and Research Progress of Environmental Interaction Genes [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 82-87. |
[13] | BAI Yuxuan, DU Jun, WANG Ting, SONAM Wangdoi. Phenological Change Characteristics of Malus pumila in Southeastern Tibet from 2001 to 2020 [J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 89-96. |
[14] | ZHANG Yufeng, SUN Jiangtao, LI Qingsong, FAN Liyao, WEN Qian. The Willingness and Influencing Factors of Farmers’ Homestead Exit in the Agricultural Area of Eastern Henan: An Example of Fugou County [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 150-156. |
[15] | TONG Fan, WEI Lin, LIU Xujun, REN Xianping, LI Zhifei, WANG Ping, HAO Yanfang. Soil Anti-scourability of Vegetation Configurations in Black Soil Region of Northeast China [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 44-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||