Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (24): 125-131.doi: 10.11924/j.issn.1000-6850.casb20190800517
Special Issue: 水稻
Previous Articles Next Articles
Received:
2019-08-10
Revised:
2019-09-19
Online:
2020-08-25
Published:
2020-08-20
Contact:
Du Chunmei
E-mail:328737154@qq.com;1487598102@qq.com
CLC Number:
Li Shan, Du Chunmei. The Interaction Between Magnaporthe oryzae and Rice: Research Progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 125-131.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20190800517
[1] |
Dean R, Kan J A L V, Pretorius Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012,13(4):414-430.
doi: 10.1111/j.1364-3703.2011.00783.x URL |
[2] | 袁军海. 中国稻瘟病菌有性世代的研究进展[J]. 河北北方学院学报, 1999(3):48-50. |
[3] | 郭晓宇, 李玲, 董波, 等. 利用荧光蛋白标记研究稻瘟病菌有性世代的细胞结构[J]. 中国细胞生物学学报, 2018,40(7):1138-1145. |
[4] | 孙国昌. 关于水稻稻瘟病病原菌学名的正确使用[J]. 真菌学报, 1994,13(2):158-159. |
[5] | 李成云, 李家瑞, 沈锐, 等. 几种寄主植物上分离的梨孢菌研究—云南省稻瘟病菌有性世代研究[J]. 西南农业学报, 2016(2):83-87. |
[6] | 刘永锋, 俞文渊, 陈志谊, 等. 水稻稻瘟病菌孢子萌发特性及其分泌蛋白质研究[C]. 中国植物病理学会学术年会, 2010. |
[7] |
Skamnioti P, Gurr S J. Against the grain: safeguarding rice from rice blast disease[J]. Trends in Biotechnology, 2009,27(3):141-150.
doi: 10.1016/j.tibtech.2008.12.002 URL |
[8] |
Pooja K, Katoch A. Past, present and future of rice blast management[J]. Plant Science Today, 2014,1(3):165-173.
doi: 10.14719/pst URL |
[9] |
Kawahara Y, Bastide M D L, Hamilton J P, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data[J]. Rice, 2013,6(1):4.
doi: 10.1186/1939-8433-6-4 URL pmid: 24280374 |
[10] |
Bogdanove A J. Protein-protein interactions in pathogen recognition by plants[J]. Plant Molecular Biology, 2002,50(6):981-989.
doi: 10.1023/A:1021263027600 URL |
[11] |
Ma S, Song Q, Tao H, et al. Prediction of protein-protein interactions between fungus (Magnaporthe grisea) and rice (Oryza sativa L.)[J]. Briefings in Bioinformatics, 2017, 1-9.
doi: 10.1093/bib/bbm058 URL pmid: 18083722 |
[12] |
Wilson R A, Talbot N J. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae[J]. Nature Reviews Microbiology, 2009,7(3):185-195.
doi: 10.1038/nrmicro2032 URL pmid: 19219052 |
[13] |
Silipo A, Erbs G, Shinya T, et al. Glyco-conjugates as elicitors or suppressors of plant innate immunity[J]. Glycobiology, 2010,20(4):406-419.
doi: 10.1093/glycob/cwp201 URL pmid: 20018942 |
[14] |
Skamnioti P, Gurr S J. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence[J]. Plant Cell, 2007,19(8):2674-2689.
doi: 10.1105/tpc.107.051219 URL pmid: 17704215 |
[15] |
Van V B, Itoh K, Nguyen Q B, et al. Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of Magnaporthe oryzae[J]. Molecular plant-microbe interactions: MPMI, 2012,25(9):1135.
doi: 10.1094/MPMI-02-12-0043-R URL pmid: 22852807 |
[16] |
Nguyen Q B, Itoh K, Vu B V, et al. Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae[J]. Molecular Microbiology, 2011,81(4):1008-1019.
doi: 10.1111/j.1365-2958.2011.07746.x URL |
[17] |
Howard R J, Ferrari M A, Roach D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proceedings of the National Academy of Sciences, 1991,88(24):11281-11284.
doi: 10.1073/pnas.88.24.11281 URL |
[18] |
Foster A J, Ryder L S, Kershaw M J, et al. The role of glycerol in the pathogenic lifestyle of the rice blast fungusr, Magnaporthe oryzae[J]. Environmental Microbiology, 2017,19(3):1008-1016.
doi: 10.1111/1462-2920.13688 URL pmid: 28165657 |
[19] |
Wu J G, Wang Y M, Park S Y, et al. Secreted alpha-N-arabinofuranosidase B protein is required for the full virulence of Magnaporthe oryzae and triggers host defences[J]. Plos One, 2016,11(10):e0165149.
doi: 10.1371/journal.pone.0165149 URL pmid: 27764242 |
[20] |
Mentlak T A, Kombrink A, Shinya T, et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease[J]. The Plant Cell, 2012,24(1):322-335.
doi: 10.1105/tpc.111.092957 URL pmid: 22267486 |
[21] |
Liu B, Li J F, Ao Y, et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity[J]. The Plant Cell, 2012,24(8):3406-3419.
doi: 10.1105/tpc.112.102475 URL pmid: 22872757 |
[22] |
Nasir F, Tian L, Chang C, et al. Current understanding of pattern-triggered immunity and hormone-mediated defense in rice (Oryza sativa) in response to Magnaporthe oryzae infection[J]. Seminars in Cell & Developmental Biology, 2017,11.
doi: 10.1006/scdb.2000.0182 URL pmid: 11105902 |
[23] |
Azizi P, Rafii M Y, Abdullah S N, et al. Toward understanding of rice innate immunity against Magnaporthe oryzae[J]. Critical Reviews in Biotechnology, 2016,36(1):165-174.
doi: 10.3109/07388551.2014.946883 URL pmid: 25198435 |
[24] |
Gust A A, Biswas R, Lenz H D, et al. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis[J]. Journal of Biological Chemistry, 2007,282(44):32338-32348.
doi: 10.1074/jbc.M704886200 URL pmid: 17761682 |
[25] |
Liu W, Liu J, Ning Y, et al. Recent progress in understanding PAMP- and Effector-Triggered Immunity against the rice blast fungus Magnaporthe oryzae[J]. Molecular Plant, 2013,6(3):605-620.
doi: 10.1093/mp/sst015 URL |
[26] | Chen X, Ronald P C. Innate immunity in rice[J]. Trends in Plant Science, 2011,16(8):1360-1385. |
[27] |
Kaku H, Nishizawa Y, Ishii Minami N, et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J]. Proceedings of the National Academy of Sciences, 2006,103(29):11086-11091.
doi: 10.1073/pnas.0508882103 URL |
[28] |
Shimizu T, Nakano T, Takamizawa D, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. The Plant Journal, 2010,64(2):204-214.
doi: 10.1111/j.1365-313X.2010.04324.x URL pmid: 21070404 |
[29] |
Kishimoto K, Kouzai Y, Kaku H, et al. Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice[J]. The Plant Journal, 2010,64(2):343-354.
doi: 10.1111/j.1365-313X.2010.04328.x URL pmid: 21070413 |
[30] |
Akamatsu A, Wong H, Fujiwara M, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host & Microbe, 2013,13(4):465-476.
doi: 10.1016/j.chom.2013.03.007 URL pmid: 23601108 |
[31] |
Petutschnig E K, Jones A M E, Serazetdinova L, et al. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation[J]. Journal of Biological Chemistry, 2010,285(37):28902-28911.
doi: 10.1074/jbc.M110.116657 URL pmid: 20610395 |
[32] |
Willmann R, Lajunen H M, Erbs G, et al. Arabidopsis lysin-motif proteins LyM1 LyM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection[J]. Proceedings of the National Academy of Sciences, 2011,108(49):19824-19829.
doi: 10.1073/pnas.1112862108 URL |
[33] |
Yamaguchi K, Yamada K, Ishikawa K, et al. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity[J]. Cell host & microbe, 2013,13(3):347-357.
doi: 10.1016/j.chom.2013.02.007 URL pmid: 23498959 |
[34] |
Yamada K, Yamaguchi K, Yoshimura S, et al. Conservation of chitin-induced mapk signaling pathways in rice and arabidopsis[J]. Plant and Cell Physiology, 2017,58(6):993-1002.
doi: 10.1093/pcp/pcx042 URL pmid: 28371870 |
[35] | Mapk G. Mitogen-activated protein kinase cascades in plants: a new nomenclature[J]. Trends in Plant Science, 2002,7(02):1360-1385. |
[36] |
Chujo T, Miyamoto K, Ogawa S, et al. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice[J]. Plos One, 2014,9(6):e98737.
doi: 10.1371/journal.pone.0098737 URL pmid: 24892523 |
[37] |
Rao K P, Richa T, Kumar K, et al. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice[J]. DNA Research, 2010,17(3):139-153.
doi: 10.1093/dnares/dsq011 URL pmid: 20395279 |
[38] |
Tena G, Boudsocq M, Sheen J. Protein kinase signaling networks in plant innate immunity[J]. Current Opinion in Plant Biology, 2011,14(5):519-529.
doi: 10.1016/j.pbi.2011.05.006 URL |
[39] |
Zhang T, Chen S, Harmon A C. Protein-protein interactions in plant mitogen-activated protein kinase cascades[J]. Journal of Experimental Botany, 2015,67(3):607.
doi: 10.1093/jxb/erv508 URL pmid: 26646897 |
[40] |
Kishi Kaboshi M, Okada K, Kurimoto L, et al. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synjournal[J]. The Plant Journal, 2010,63(4):599-612.
doi: 10.1111/j.1365-313X.2010.04264.x URL pmid: 20525005 |
[41] |
Shinya T, Yamaguchi K, Desaki Y, et al. Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27[J]. The Plant Journal, 2014,79(1):56-66.
doi: 10.1111/tpj.12535 URL pmid: 24750441 |
[42] | Yamada K, Yamaguchi K, Shirakawa T, et al. The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation[J]. The EMBO Journal, 2016(35):2468-2483. |
[43] |
Rasmussen M W, Roux M, Petersen M, et al. Map kinase cascades in Arabidopsis innate immunity[J]. Frontiers in Plant Science, 2012,3, 169.
doi: 10.3389/fpls.2012.00169 URL pmid: 22837762 |
[44] |
Coll N S, Epple P, Dangl J L. Programmed cell death in the plant immune system[J]. Cell Death and Differentiation, 2011,18(8):1247-1256.
doi: 10.1038/cdd.2011.37 URL |
[45] | 张红生, 吴云雨, 鲍永美. 水稻与稻瘟病菌互作机制研究进展[J]. 南京农业大学学报, 2012,35(5):1-8. |
[46] |
Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annual Review of Plant Biology, 2009,60(1):379-406.
doi: 10.1146/annurev.arplant.57.032905.105346 URL |
[47] |
Hogenhout S A, HogenhVan der Hoornout R A, Terauchi R, et al. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular Plant-Microbe Interactions, 2009,22:115-122.
doi: 10.1094/MPMI-22-2-0115 URL pmid: 19132864 |
[48] |
Montesano M, Brader G, Palva E T. Pathogen derived elicitors: searching for receptors in plants[J]. Molecular Plant Pathology, 2003,4(1):73-79.
doi: 10.1046/j.1364-3703.2003.00150.x URL pmid: 20569365 |
[49] |
Leung H, Raghavan C, Zhou B, et al. Allele mining and enhanced genetic recombination for rice breeding[J]. Rice, 2015,8(1):34.
doi: 10.1186/s12284-014-0034-1 URL pmid: 26054238 |
[50] |
Azizi P, Rafii M Y, Abdullah S N, et al. Toward understanding of rice innate immunity against Magnaporthe oryzae[J]. Critical Reviews in Biotechnology, 2016,36(1):165-174.
doi: 10.3109/07388551.2014.946883 URL pmid: 25198435 |
[51] |
李智强, 王国梁, 刘文德. 水稻抗病分子机制研究进展[J]. 生物技术通报, 2016,32(10):97-108.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.010 URL |
[52] |
Sadegh A, Rafii M Y, Mahmoodreza S, et al. Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop[J]. Frontiers in Plant Science, 2015,6:886.
doi: 10.3389/fpls.2015.00886 URL pmid: 26635817 |
[53] |
Smith P J. The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines[J]. Phytopathology, 2009,99(3):243.
doi: 10.1094/PHYTO-99-3-0243 URL pmid: 19203276 |
[54] | 郝鲲, 马建, 程治军, 等. 水稻抗稻瘟病基因资源与分子育种策略[J]. 植物遗传资源学报, 2013,14(3):479-485. |
[1] | ZHOU Dongdong, ZHANG Jun, GE Mengjie, LIU Zhonghong, ZHU Xiaohuan, LI Chunyan. Effects of Different Nitrogen Treatments on Grain Yield, Nitrogen Utilization Efficiency and Quality of Late-sowing Wheat ‘Huaimai 36’ Following Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 1-7. |
[2] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[3] | LUO Xianfu, LIU Wenqiang, PAN Xiaowu, DONG Zheng, LIU Sanxiong, LIU Licheng, YANG Biaoren, SHENG Xinnian, LI Xiaoxiang. Mapping of Plant Height QTL Using NILs Derived from Residual Heterozygous Lines in Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 1-5. |
[4] | ZHANG Shuangyan, REN Hao, DING Wenqing, WU Yutao. Research Progress on Material Utilization of Agricultural Waste Rice Husk [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 101-108. |
[5] | HUANG Yu, CHEN Bin, XIAO Guanli. The Physiological Response of the Local Rice Variety of ‘Acuce’ of Hani Nationality in Yunnan Against the Feeding of Nilaparvata lugens Stål [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 123-129. |
[6] | SHI Yonghai, CAO Xiangde, XU Jiabo. Effect of COVID-19 Epidemic on Alosa sapidissima Production in China and the Countermeasures [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 151-156. |
[7] | LI Xinghua, WANG Huan, ZHANG Sheng, CAI Xingxing, ZHOU Qiang, ZHOU Nan. Nitrogen Application Rate and Mode: Effects on Yield and Dry Matter Accumulation and Transport After Flowering of Late Indica Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 6-13. |
[8] | YE Pei, LIU Kequn, SHEN Shuanghe, LIU Kaiwen, LIU Zhixiong, DENG Yanjun. Risk Analysis and Regionalization of Heat Damage During Heading and Flowering Stage of Mid-season Rice in Hubei Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 110-117. |
[9] | WANG Yifan, LAO Xiaocan, YU Liping, YE Hailong. Rice Variety ‘Yongyou 15’: The Suitability of Meteorological Conditions for Sowing by Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 106-109. |
[10] | YAO Jie, CHENG Lei, ZHOU Tao, LEI Pengkun, ZHU Yuejian, MA Lei. Advances in Germplasm Resources and Genetic Breeding of Pseudostellaria heterophylla in China [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 62-66. |
[11] | LIU Xiaohang, MA Shuqing, ZHAO Jing, QUAN Hujie, DENG Kuicai, CHAI Qingrong. Yield Response of Japonica Rice of Northeast China to Low Temperature in Different Time Periods of Booting Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 91-98. |
[12] | LI Xuefeng, WANG Jian, YE Xiaoyuan, ZHANG Xiuting, WANG Lixue. Plant Aqueous Extract of Momordica charantia: Effects on Rice Seed Germination and Seedling Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 1-7. |
[13] | LIANG Zengji, MU Fang, WANG Nan. Evolution and Prospect of Wheat Breeding in Weibei Rainfed Highland Region of China [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 8-14. |
[14] | YAN Yuntao, HE Xi, ZHANG Haiqing, HE Jiwai. Advances in Research on the Storability of Rice Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 1-8. |
[15] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||