Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (29): 54-61.doi: 10.11924/j.issn.1000-6850.casb2020-0104
Previous Articles Next Articles
Liu Jiajia1(), She Lulu1, Lan Xiaozhong2, Lu Yaning1, Yang Jiahui1, Liu Huan1, Lu Cunfu1, Chen Yuzhen1(
)
Received:
2020-05-15
Revised:
2020-07-29
Online:
2020-10-15
Published:
2020-10-16
Contact:
Chen Yuzhen
E-mail:273602389@qq.com;chenyuzhen@bfu.edu.cn
CLC Number:
Liu Jiajia, She Lulu, Lan Xiaozhong, Lu Yaning, Yang Jiahui, Liu Huan, Lu Cunfu, Chen Yuzhen. Bioinformatics and Expression Analysis of MYB Gene Family Based on Transcriptome of Cold-acclimated Mirabilis himalaica Callus[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 54-61.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0104
基因ID | 基因编号 | MYB类型 | 不稳定指数 | 等电点 | 氨基酸数目 | 分子量 | 亚细胞定位 | α螺旋 | 扩展链 | β折叠 | 无规则卷曲 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster-17452.17425 | MYB4 | R2R3-MYB | 58.58 | 8.63 | 239 | 27073.45 | Mitochondrial | 49 | 9 | 13 | 48 | |||||||||||
Cluster-17452.71422 | MYB6 | R2R3-MYB | 36.38 | 8.51 | 216 | 24671.7 | Nuclear | 58 | 20 | 12 | 129 | |||||||||||
Cluster-17452.60445 | MYB14 | R2R3-MYB | 40.23 | 5.68 | 283 | 32439.98 | Nuclear | 74 | 15 | 13 | 181 | |||||||||||
Cluster-17452.100539 | MYB15 | R2R3-MYB | 54.37 | 5.57 | 271 | 31185.5 | Nuclear | 86 | 10 | 15 | 160 | |||||||||||
Cluster-17452.116547 | MYB17 | R2R3-MYB | 51.43 | 5.84 | 294 | 32990.84 | Nuclear | 107 | 19 | 15 | 153 | |||||||||||
Cluster-12557.0 | MYB18 | R2R3-MYB | 56.73 | 6.63 | 246 | 28269.58 | Nuclear | 76 | 7 | 14 | 149 | |||||||||||
Cluster-110.1 | MYB21 | R2R3-MYB | 54.25 | 6.75 | 209 | 24412.26 | Mitochondrial | 66 | 15 | 8 | 120 | |||||||||||
Cluster-31361.2 | MYB27 | R2R3-MYB | 68.11 | 5.82 | 260 | 30513.96 | Nuclear | 94 | 23 | 13 | 129 | |||||||||||
Cluster-17452.39855 | MYB30 | R2R3-MYB | 63.82 | 6.79 | 364 | 75504.49 | Nuclear | 195 | 82 | 36 | 353 | |||||||||||
Cluster-17452.65292 | MYB36 | R2R3-MYB | 57.52 | 6.68 | 302 | 34324.79 | Nuclear | 59 | 74 | 169 | ||||||||||||
Cluster-17452.38918 | MYB41 | R2R3-MYB | 51.43 | 5.84 | 294 | 32990.84 | Nuclear | 86 | 31 | 177 | ||||||||||||
Cluster-17452.122836 | MYB48 | R2R3-MYB | 65.01 | 9.54 | 179 | 20541.16 | Nuclear | 41 | 36 | 102 | ||||||||||||
Cluster-17452.114977 | MYB59 | R2R3-MYB | 52.75 | 6.72 | 207 | 23976.6 | Nuclear | 71 | 14 | 10 | 112 | |||||||||||
Cluster-17452.25903 | MYB61 | R2R3-MYB | 9.87 | 9.87 | 155 | 17830.42 | Mitochondrial | 69 | 3 | 17 | 66 | |||||||||||
Cluster-17452.60725 | MYB62 | R2R3-MYB | 65.54 | 5.31 | 269 | 30447.87 | Nuclear | 107 | 21 | 9 | 132 | |||||||||||
Cluster-3908.2 | MYB63 | R2R3-MYB | 49.39 | 7.76 | 233 | 26781.79 | Nuclear | 83 | 15 | 18 | 118 | |||||||||||
Cluster-17452.86434 | MYB73 | R2R3-MYB | 48.54 | 8.72 | 276 | 30146 | Nuclear | 72 | 17 | 7 | 181 | |||||||||||
Cluster-9350.0 | MYB77 | R2R3-MYB | 57.29 | 5.43 | 242 | 26999.38 | Nuclear | 61 | 52 | 129 | ||||||||||||
Cluster-17452.59151 | MYB78 | R2R3-MYB | 36.5 | 5.04 | 204 | 23190.33 | Nuclear | 37 | 37 | 130 | ||||||||||||
Cluster-17452.109149 | MYB79 | R2R3-MYB | 47.11 | 8.99 | 255 | 29758.52 | Nuclear | 115 | 30 | 19 | 91 | |||||||||||
Cluster-17452.114985 | MYB84 | R2R3-MYB | 51.09 | 6.18 | 297 | 33810.8 | Nuclear | 103 | 16 | 10 | 168 | |||||||||||
Cluster-17452.95774 | MYB88 | R2R3-MYB | 56.68 | 7.7 | 434 | 48606.42 | Nuclear | 163 | 47 | 21 | 203 | |||||||||||
Cluster-16803.0 | MYB92 | R2R3-MYB | 63.97 | 4.83 | 239 | 15317.74 | Mitochondrial | 50 | 11 | 13 | 59 | |||||||||||
Cluster-17452.52590 | MYB94 | R2R3-MYB | 62.02 | 8.55 | 352 | 39486.18 | Nuclear | 109 | 26 | 11 | 206 | |||||||||||
Cluster-17452.65641 | MYB97 | R2R3-MYB | 66.14 | 8.18 | 284 | 31906.24 | Nuclear | 86 | 12 | 11 | 175 | |||||||||||
Cluster-23158.1 | MYB102 | R2R3-MYB | 54.88 | 8.1 | 309 | 35297.72 | Mitochondrial | 84 | 26 | 16 | 183 | |||||||||||
Cluster-31442.0 | MYB106 | R2R3-MYB | 55.58 | 8.23 | 357 | 39742.16 | Nuclear | 106 | 53 | 21 | 177 | |||||||||||
Cluster-30491.5 | MYB108 | R2R3-MYB | 65.19 | 6.44 | 283 | 31439.28 | Nuclear | 37 | 37 | 130 | ||||||||||||
Cluster-17452.69681 | MYB121 | R2R3-MYB | 52.44 | 9.44 | 285 | 1833.93 | Nuclear | 70 | 46 | 24 | 139 | |||||||||||
Cluster-17452.65641 | MYB125 | R2R3-MYB | 62.82 | 9.74 | 240 | 27058.78 | Nuclear | 55 | 45 | |||||||||||||
Cluster-3511.0 | MYB1R1 | MYB1R1 | 54.53 | 6.93 | 327 | 35652.31 | Nuclear | 62 | 40 | 225 | ||||||||||||
Cluster-30491.5 | MYB1R2 | MYB1R3 | 65.19 | 6.44 | 283 | 31439.28 | Nuclear | 73 | 20 | 190 | ||||||||||||
Cluster-21203.0 | MYB3R1 | 3R-MYB | 71.36 | 5.21 | 981 | 107388.4 | Nuclear | 227 | 126 | 610 | ||||||||||||
Cluster-15152.9 | MYB3R2 | 3R-MYB | 70.02 | 5.1 | 987 | 109565.91 | Nuclear | 230 | 166 | 166 |
基因ID | 基因编号 | MYB类型 | 不稳定指数 | 等电点 | 氨基酸数目 | 分子量 | 亚细胞定位 | α螺旋 | 扩展链 | β折叠 | 无规则卷曲 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster-17452.17425 | MYB4 | R2R3-MYB | 58.58 | 8.63 | 239 | 27073.45 | Mitochondrial | 49 | 9 | 13 | 48 | |||||||||||
Cluster-17452.71422 | MYB6 | R2R3-MYB | 36.38 | 8.51 | 216 | 24671.7 | Nuclear | 58 | 20 | 12 | 129 | |||||||||||
Cluster-17452.60445 | MYB14 | R2R3-MYB | 40.23 | 5.68 | 283 | 32439.98 | Nuclear | 74 | 15 | 13 | 181 | |||||||||||
Cluster-17452.100539 | MYB15 | R2R3-MYB | 54.37 | 5.57 | 271 | 31185.5 | Nuclear | 86 | 10 | 15 | 160 | |||||||||||
Cluster-17452.116547 | MYB17 | R2R3-MYB | 51.43 | 5.84 | 294 | 32990.84 | Nuclear | 107 | 19 | 15 | 153 | |||||||||||
Cluster-12557.0 | MYB18 | R2R3-MYB | 56.73 | 6.63 | 246 | 28269.58 | Nuclear | 76 | 7 | 14 | 149 | |||||||||||
Cluster-110.1 | MYB21 | R2R3-MYB | 54.25 | 6.75 | 209 | 24412.26 | Mitochondrial | 66 | 15 | 8 | 120 | |||||||||||
Cluster-31361.2 | MYB27 | R2R3-MYB | 68.11 | 5.82 | 260 | 30513.96 | Nuclear | 94 | 23 | 13 | 129 | |||||||||||
Cluster-17452.39855 | MYB30 | R2R3-MYB | 63.82 | 6.79 | 364 | 75504.49 | Nuclear | 195 | 82 | 36 | 353 | |||||||||||
Cluster-17452.65292 | MYB36 | R2R3-MYB | 57.52 | 6.68 | 302 | 34324.79 | Nuclear | 59 | 74 | 169 | ||||||||||||
Cluster-17452.38918 | MYB41 | R2R3-MYB | 51.43 | 5.84 | 294 | 32990.84 | Nuclear | 86 | 31 | 177 | ||||||||||||
Cluster-17452.122836 | MYB48 | R2R3-MYB | 65.01 | 9.54 | 179 | 20541.16 | Nuclear | 41 | 36 | 102 | ||||||||||||
Cluster-17452.114977 | MYB59 | R2R3-MYB | 52.75 | 6.72 | 207 | 23976.6 | Nuclear | 71 | 14 | 10 | 112 | |||||||||||
Cluster-17452.25903 | MYB61 | R2R3-MYB | 9.87 | 9.87 | 155 | 17830.42 | Mitochondrial | 69 | 3 | 17 | 66 | |||||||||||
Cluster-17452.60725 | MYB62 | R2R3-MYB | 65.54 | 5.31 | 269 | 30447.87 | Nuclear | 107 | 21 | 9 | 132 | |||||||||||
Cluster-3908.2 | MYB63 | R2R3-MYB | 49.39 | 7.76 | 233 | 26781.79 | Nuclear | 83 | 15 | 18 | 118 | |||||||||||
Cluster-17452.86434 | MYB73 | R2R3-MYB | 48.54 | 8.72 | 276 | 30146 | Nuclear | 72 | 17 | 7 | 181 | |||||||||||
Cluster-9350.0 | MYB77 | R2R3-MYB | 57.29 | 5.43 | 242 | 26999.38 | Nuclear | 61 | 52 | 129 | ||||||||||||
Cluster-17452.59151 | MYB78 | R2R3-MYB | 36.5 | 5.04 | 204 | 23190.33 | Nuclear | 37 | 37 | 130 | ||||||||||||
Cluster-17452.109149 | MYB79 | R2R3-MYB | 47.11 | 8.99 | 255 | 29758.52 | Nuclear | 115 | 30 | 19 | 91 | |||||||||||
Cluster-17452.114985 | MYB84 | R2R3-MYB | 51.09 | 6.18 | 297 | 33810.8 | Nuclear | 103 | 16 | 10 | 168 | |||||||||||
Cluster-17452.95774 | MYB88 | R2R3-MYB | 56.68 | 7.7 | 434 | 48606.42 | Nuclear | 163 | 47 | 21 | 203 | |||||||||||
Cluster-16803.0 | MYB92 | R2R3-MYB | 63.97 | 4.83 | 239 | 15317.74 | Mitochondrial | 50 | 11 | 13 | 59 | |||||||||||
Cluster-17452.52590 | MYB94 | R2R3-MYB | 62.02 | 8.55 | 352 | 39486.18 | Nuclear | 109 | 26 | 11 | 206 | |||||||||||
Cluster-17452.65641 | MYB97 | R2R3-MYB | 66.14 | 8.18 | 284 | 31906.24 | Nuclear | 86 | 12 | 11 | 175 | |||||||||||
Cluster-23158.1 | MYB102 | R2R3-MYB | 54.88 | 8.1 | 309 | 35297.72 | Mitochondrial | 84 | 26 | 16 | 183 | |||||||||||
Cluster-31442.0 | MYB106 | R2R3-MYB | 55.58 | 8.23 | 357 | 39742.16 | Nuclear | 106 | 53 | 21 | 177 | |||||||||||
Cluster-30491.5 | MYB108 | R2R3-MYB | 65.19 | 6.44 | 283 | 31439.28 | Nuclear | 37 | 37 | 130 | ||||||||||||
Cluster-17452.69681 | MYB121 | R2R3-MYB | 52.44 | 9.44 | 285 | 1833.93 | Nuclear | 70 | 46 | 24 | 139 | |||||||||||
Cluster-17452.65641 | MYB125 | R2R3-MYB | 62.82 | 9.74 | 240 | 27058.78 | Nuclear | 55 | 45 | |||||||||||||
Cluster-3511.0 | MYB1R1 | MYB1R1 | 54.53 | 6.93 | 327 | 35652.31 | Nuclear | 62 | 40 | 225 | ||||||||||||
Cluster-30491.5 | MYB1R2 | MYB1R3 | 65.19 | 6.44 | 283 | 31439.28 | Nuclear | 73 | 20 | 190 | ||||||||||||
Cluster-21203.0 | MYB3R1 | 3R-MYB | 71.36 | 5.21 | 981 | 107388.4 | Nuclear | 227 | 126 | 610 | ||||||||||||
Cluster-15152.9 | MYB3R2 | 3R-MYB | 70.02 | 5.1 | 987 | 109565.91 | Nuclear | 230 | 166 | 166 |
基因ID | 基因编号 | 丝氨酸Ser | 苏氨酸Thr | 酪氨酸Tyr | 基因ID | 基因编号 | 丝氨酸Ser | 苏氨酸Thr | 酪氨酸Tyr |
---|---|---|---|---|---|---|---|---|---|
Cluster-17452.17426 | MYB4 | 1 | 2 | 0 | Cluster-17452.86434 | MYB73 | 17 | 4 | 0 |
Cluster-17452.71422 | MYB6 | 7 | 4 | 1 | Cluster-9350.0 | MYB77 | 20 | 2 | 0 |
Cluster-17452.60445 | MYB14 | 12 | 6 | 7 | Cluster-17452.59151 | MYB78 | 1 | 2 | 3 |
Cluster-17452.100539 | MYB15 | 14 | 8 | 5 | Cluster-17452.109149 | MYB79 | 5 | 4 | 2 |
Cluster-17452.116547 | MYB17 | 16 | 8 | 4 | Cluster-17452.114985 | MYB84 | 9 | 6 | 5 |
Cluster-12557.0 | MYB18 | 8 | 4 | 3 | Cluster-17452.95774 | MYB88 | 23 | 7 | 2 |
Cluster-110.1 | MYB21 | 5 | 4 | 2 | Cluster-16803.0 | MYB92 | 3 | 3 | 1 |
Cluster-31361.2 | MYB27 | 9 | 3 | 7 | Cluster-17452.52590 | MYB94 | 20 | 6 | 3 |
Cluster-17452.39855 | MYB30 | 38 | 3 | 8 | Cluster-17452.65641 | MYB97 | 14 | 2 | 2 |
Cluster-17452.65292 | MYB36 | 11 | 0 | 7 | Cluster-23158.1 | MYB102 | 8 | 3 | 3 |
Cluster-17452.38918 | MYB41 | 16 | 8 | 4 | Cluster-31442.0 | MYB106 | 18 | 4 | 2 |
Cluster-17452.122836 | MYB48 | 13 | 0 | 1 | Cluster-30491.5 | MYB108 | 18 | 4 | 2 |
Cluster-17452.16659 | MYB56 | 18 | 4 | 3 | Cluster-17452.69681 | MYB121 | 12 | 3 | 3 |
Cluster-17452.114977 | MYB59 | 16 | 2 | 4 | Cluster-3511.0 | MYB1R1 | 21 | 8 | 1 |
Cluster-17452.25903 | MYB61 | 4 | 4 | 0 | Cluster-30491.5 | MYB1R2 | 18 | 4 | 2 |
Cluster-17452.60725 | MYB62 | 23 | 3 | 1 | Cluster-21203.0 | MYB3R1 | 49 | 18 | 6 |
Cluster-3908.2 | MYB63 | 6 | 1 | 2 | Cluster-15152.9 | MYB3R2 | 49 | 18 | 7 |
基因ID | 基因编号 | 丝氨酸Ser | 苏氨酸Thr | 酪氨酸Tyr | 基因ID | 基因编号 | 丝氨酸Ser | 苏氨酸Thr | 酪氨酸Tyr |
---|---|---|---|---|---|---|---|---|---|
Cluster-17452.17426 | MYB4 | 1 | 2 | 0 | Cluster-17452.86434 | MYB73 | 17 | 4 | 0 |
Cluster-17452.71422 | MYB6 | 7 | 4 | 1 | Cluster-9350.0 | MYB77 | 20 | 2 | 0 |
Cluster-17452.60445 | MYB14 | 12 | 6 | 7 | Cluster-17452.59151 | MYB78 | 1 | 2 | 3 |
Cluster-17452.100539 | MYB15 | 14 | 8 | 5 | Cluster-17452.109149 | MYB79 | 5 | 4 | 2 |
Cluster-17452.116547 | MYB17 | 16 | 8 | 4 | Cluster-17452.114985 | MYB84 | 9 | 6 | 5 |
Cluster-12557.0 | MYB18 | 8 | 4 | 3 | Cluster-17452.95774 | MYB88 | 23 | 7 | 2 |
Cluster-110.1 | MYB21 | 5 | 4 | 2 | Cluster-16803.0 | MYB92 | 3 | 3 | 1 |
Cluster-31361.2 | MYB27 | 9 | 3 | 7 | Cluster-17452.52590 | MYB94 | 20 | 6 | 3 |
Cluster-17452.39855 | MYB30 | 38 | 3 | 8 | Cluster-17452.65641 | MYB97 | 14 | 2 | 2 |
Cluster-17452.65292 | MYB36 | 11 | 0 | 7 | Cluster-23158.1 | MYB102 | 8 | 3 | 3 |
Cluster-17452.38918 | MYB41 | 16 | 8 | 4 | Cluster-31442.0 | MYB106 | 18 | 4 | 2 |
Cluster-17452.122836 | MYB48 | 13 | 0 | 1 | Cluster-30491.5 | MYB108 | 18 | 4 | 2 |
Cluster-17452.16659 | MYB56 | 18 | 4 | 3 | Cluster-17452.69681 | MYB121 | 12 | 3 | 3 |
Cluster-17452.114977 | MYB59 | 16 | 2 | 4 | Cluster-3511.0 | MYB1R1 | 21 | 8 | 1 |
Cluster-17452.25903 | MYB61 | 4 | 4 | 0 | Cluster-30491.5 | MYB1R2 | 18 | 4 | 2 |
Cluster-17452.60725 | MYB62 | 23 | 3 | 1 | Cluster-21203.0 | MYB3R1 | 49 | 18 | 6 |
Cluster-3908.2 | MYB63 | 6 | 1 | 2 | Cluster-15152.9 | MYB3R2 | 49 | 18 | 7 |
[1] |
Chen Y H, Yang X Y, He K, et al. The MYB Transcription factor superfamily of Arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family[J]. Plant Molecular Biology, 2006,60(1):107-124.
URL pmid: 16463103 |
[2] | Katiyar A, Smita S, Lenka S, et al., Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis[J]. Bmc Genomics, 2019,13(1):544. |
[3] |
Feller A, Machemer K, Braun E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant Journal for Cell & Molecular Biology, 2011,66(1):94-116.
URL pmid: 21443626 |
[4] |
Agarwal M, Hao Y, Kapoor A, et al. A R2R3 Type MYB Transcription Factor Is Involved in the Cold Regulation of CBF Genes and in Acquired Freezing Tolerance[J]. Journal of Biological Chemistry, 2006,281.
URL pmid: 17085435 |
[5] |
Dias A P, Braun E L, Grotewold M M. Recently Duplicated Maize R2R3 Myb Genes Provide Evidence for Distinct Mechanisms of Evolutionary Divergence after Duplication[J]. Plant Physiology, 2003,131(2):610-620.
doi: 10.1104/pp.012047 URL pmid: 12586885 |
[6] | Cong A, Sheng L P, Du X P, et al. Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynjournal of lignin[J]. Horticulture Research, 2019(6):84 |
[7] | Newman L J, Perazza D E, Juda L, et al. Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype[J]. The Plant Journal: for Cell and Molecular Biology, 2004,37(2):239-250. |
[8] |
Seo P J, Xiang F, Qiao M, et al. The MYB96 Transcription Factor Mediates Abscisic Acid Signaling during Drought Stress Response in Arabidopsis[J]. Plant physiology, 2009,151(1):275-289.
doi: 10.1104/pp.109.144220 URL pmid: 19625633 |
[9] |
Cominelli E, Galbiati M, Vavasseur A, et al. A Guard-Cell-Specific MYB Transcription Factor Regulates Stomatal Movements and Plant Drought Tolerance[J]. Current Biology, 2005,15(13):1196-1200.
doi: 10.1016/j.cub.2005.05.048 URL pmid: 16005291 |
[10] |
Hemm M R, Herrmann K M, Chapple C. AtMYB4: A transcription factor general in the battle against UV[J]. Trends in Plant Science, 2001,6(4):135-136.
URL pmid: 11286899 |
[11] |
Feng K, Liu J X, Duan A Q, et al. AgMYB2 transcription factor is involved in the regulation of anthocyanin biosynjournal in purple celery (Apium graveolens)[J]. Planta, 2018,248:1249-1261.
URL pmid: 30099650 |
[12] |
Medina P L, Cumplido L G, Amil R F, et al. plays a major role in the regulation of flavonoid/ phenylpropanoid metabolism during ripening of Fragaria ananassa fruits[J]. Journal of Experimental Botany, 2015,65:401-417.
doi: 10.1093/jxb/ert377 URL pmid: 24277278 |
[13] |
Albert N W, Thrimawithana A H, McGhie T K, et al. Genetic analysis of the liverwort Marchantia polymorpha reveals that R2R3MYB activation of flavonoid production in response to abiotic stress is an ancient character in land plants[J]. New Phytologist, 2018: 554-566.
URL pmid: 17083685 |
[14] |
Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J, 2007,50:660-677.
doi: 10.1111/j.1365-313X.2007.03078.x URL pmid: 17419845 |
[15] | Zhu X F, Jiang T, Wang Z W, et al. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana[J]. Journal of Hazardous Materials, 2012,239(15):302-307. |
[16] | Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010,15(10):0-581. |
[17] |
Chen Y, Xiaoyuan Y, Kun H, et al. The MYB Transcription Factor Superfamily of Arabidopsis: Expression Analysis and Phylogenetic Comparison with the Rice MYB Family[J]. Plant Molecular Biology, 2006,60(1):107-124.
URL pmid: 16463103 |
[18] |
Du H, Liang Z, Zhao S, et al. The Evolutionary History of R2R3-MYB Proteins Across 50 Eukaryotes: New Insights Into Subfamily Classification and Expansion[J]. Scientific Reports, 2015,5(1):11037.
doi: 10.1038/srep11037 URL |
[19] |
Wang Z, Tang J, Hu R, et al. Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals their stress and hormone responsive patterns[J]. Bmc Genomics, 2015,16(1):17.
doi: 10.1186/s12864-015-1216-y URL |
[20] |
Wilkins O, Nahal H, Foong J, et al. Expansion and Diversification of the Populus R2R3-MYB Family of Transcription Factors[J]. Plant Physiology, 2008,149(2):981-993.
doi: 10.1104/pp.108.132795 URL pmid: 19091872 |
[21] |
José T M, Aquea F, Arc J P. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes[J]. BMC Plant Biology, 2008,8(1):83.
doi: 10.1186/1471-2229-8-83 URL |
[23] |
卢骁, 兰小中, 杨凤娇, 等. 喜马拉雅紫茉莉瘦果粘液对种子低温萌发的保护[J]. 草地学报, 2014,22(6):1281-1287.
doi: 10.11733/j.issn.1007-0435.2014.06.021 URL |
[24] | 卢杰, 兰小中. 拉萨市珍稀濒危藏药植物资源调查研究[J]. 中国中药杂志, 2013,38(1):127-132. |
[25] |
Garg V K, Avashthi H, iwari A, et al. MFPPI-multi FASTA protparam interface[J]. Bioinformation, 2016,12(2):74-77.
doi: 10.6026/97320630012074 URL pmid: 28104964 |
[26] |
Thorley J L, age R D. Rad C: Phylogenetic tree comparison and consensus[J]. Bioinformatics, 00016(5):486-487.
doi: 10.1093/bioinformatics/16.5.486 URL |
[27] |
Ziska L H, Rmura A H, Ullivan J H. Physiological sensitivity of plants along an elevational gradient to UV-B radiation[J]. Amer J Bot, 1992,79:863-871.
doi: 10.1002/j.1537-2197.1992.tb13667.x URL |
[28] |
Elisa Schulz, ohge T, uther E, et al. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana[J]. Scientific Reports, 2016,6:34027.
doi: 10.1038/srep34027 URL pmid: 27658445 |
[29] |
Justyna M, Kamil K, Anna K. Flavonoids as important molecules of plant interactions with the environment[J]. Molecules, 2014,19(10):16240-16265.
URL pmid: 25310150 |
[30] |
Huang Y L, Jin D S, Lu C F, et al. Proteomic responses associated with freezing tolerance in the callus of the Tibetan alpine plant Saussurea laniceps during cold acclimation[J]. Plant, Cell, Tissue and Organ Culture, 2016,124:81-95.
doi: 10.1007/s11240-015-0876-2 URL |
[31] |
严莉, 王翠平, 陈建伟, 等. 基于转录组信息的黑果枸杞MYB转录因子家族分析[J]. 中国农业科学, 2017,50(20):3991-4002.
doi: 10.3864/j.issn.0578-1752.2017.20.013 URL |
[32] |
Cai H, Tian S, Dong H. Large Scale In Silico, Identification of MYB, Family Genes from Triticum aestivum Expressed Sequence Tags[J]. Molecular Biotechnology, 2012,52(2):184-192.
doi: 10.1007/s12033-011-9486-3 URL pmid: 22187170 |
[33] |
Mehanathan M, Rohit K, Bhan Y C, et al. Identification and Molecular Characterization of MYB Transcription Factor Superfamily in C4 Model Plant Foxtail Millet (Setaria italica)[J]. Plos One, 2014,9(10):e109920.
doi: 10.1371/journal.pone.0109920 URL pmid: 25279462 |
[1] | ZHENG Lingling, JI Ruifeng, HAN Hongliang, LUO Yilu, LUO Jiayi, GUAN Yueqin, YAO Qisheng, ZHENG Weibing, CHEN Meilan, ZHOU Xiuteng. Determination of Five Kinds of Flavonoids in the Medicinal Herbs of Thesium chinensis [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 30-36. |
[2] | CHEN Liuhong, ZHAO Chunlei, WANG Xi, LI Yanli, DING Guangzhou, CHEN Li. Single-cell Transcriptome Sequencing Technology and Its Application in Plant Research [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 87-93. |
[3] | QIN Zhihua, CAI Qingxia, WANG Jianlin, WANG Shubai, TAN Zichao, ZHANG Linlin, GUO Pei, SHAN Hu. Optimization of the Extraction Process of Total Flavonoids from Broussonetia papyrifera Leaves by Ethanol Heating Reflux Method [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 110-114. |
[4] | Huang Jing, Chen Chan, Huang Xiaomei. Flavonoids from Fujian Bergamot: Ultrasonicly Extracting Technology and Its Antioxidation Properties [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 126-131. |
[5] | Qian Chunrong, Li Liang, Jiang Yubo, Yu Yang, Hao Yubo, Gong Xiujie, Ge Xuanliang, Lv Guoyi, Wang Weiming, Lai Yongcai. Effects of Harvesting Period of Corn Silk on Its Functional Components, Collectable Silk Yield and Maize Yield [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 14-18. |
[6] | Sun Mingyang, Xu Shiqiang, Gu Yan, Mei Yu, Zhou Fang, Li Jingyu, Wang Jihua. The Full-length Transcriptome of Kalmegh (Andrographis paniculate): Sequencing and Characterization [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 82-89. |
[7] | Zhu Yongxing, Guan Yajing, Li Xin, Zhang Chunyi. Ion Changes and Transcriptome Analysis of Maize Under Salt Stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 110-115. |
[8] | Guo Jie, Tian Haijiao, Qin Xuemei, Zhao Xiaoxia, Gao Fen. Effects of Antagonistic Bacillus on the Main Active Components of Astragalus membranaceus var. mongholicus [J]. Chinese Agricultural Science Bulletin, 2021, 37(19): 84-89. |
[9] | Jiang Shuo, Wan Lu, Xu Zhexiang, Yan Jiajia, Zheng Chunying. Research Progress on Flavonoids of Cannabis sativa L [J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 120-128. |
[10] | Xu Ruo, Zhang Xiufen, Li Yanbing, Zi Shuhui, Yang Shengchao, Liu Tao. Effects of Drought Stress on Physiological Indexes of Panax notoginseng and Transcriptome Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 51-58. |
[11] | Lu Zhengyu, Wang Gang, Li Renren, Cui Rufei, Geng Gui. Research on the mechanism of Salt Resistance in Sugar Beet based on OMICS Technologies [J]. Chinese Agricultural Science Bulletin, 2021, 37(15): 92-98. |
[12] | Li Guanrong, He Hao, Zhu Guoqing, Chen Shiya, Xu Yang, Jin Shumei. Salt-stress (NaHCO3) Revealed by RNA-seq: Effect on Gene Expression in Lilium pumilum Bulb [J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 64-71. |
[13] | Luo Li’na, Xiang Zengxu. The Relative Difference Genes in the Process of Dormancy Release of Polygonatum sibiricum Red. Based on the Transcriptome Sequencing Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 1-8. |
[14] | Hong Keqian, Xia Weili, Li Peiling, Xu Hanbing, Gu Hui, Chen Li. Data Mining of Simple Sequence Repeats in Dendrobium huoshanense Transcriptome [J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 106-110. |
[15] | Zou Hongfei, Shu Xiaoyan, Zhang Yueqin, Liu Yuan, Yang Wenyu, Zhao Guiying. Flavonoids of Toona sinensis Leaves: Separating and Purifying with D-101 Macroporous Adsorptive Resin and the Antioxidant Activity [J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 159-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||