Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (21): 126-133.doi: 10.11924/j.issn.1000-6850.casb2020-0674
Special Issue: 生物技术
Previous Articles Next Articles
Gao Zhuo1,2(), Tan Yiwen1, Wei Duo2, Wang Jinxia1, Wang Man2, Zhou Wanting2, Liu Dali2(
), Lu Zhenqiang1(
)
Received:
2020-11-18
Revised:
2021-02-19
Online:
2021-07-25
Published:
2021-07-29
Contact:
Liu Dali,Lu Zhenqiang
E-mail:1804292015@qq.com;383739479@qq.com;zhenqianglu@163.com
CLC Number:
Gao Zhuo, Tan Yiwen, Wei Duo, Wang Jinxia, Wang Man, Zhou Wanting, Liu Dali, Lu Zhenqiang. BvHIPP24 Characterization of Energy Beet and Its Function Analysis in Yeast Under Cadmium Stress[J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 126-133.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0674
[1] |
Abreu-Neto J B, Turchetto-Zolet A C, Oliveira L F V, et al. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants[J]. FEBS Journal, 2013, 280(7):1604-1616.
doi: 10.1111/febs.2013.280.issue-7 URL |
[2] |
Tehseen M, Cairns N, Sherson S, et al. Metallochaperone-like genes in Arabidopsis thaliana[J]. Metallomics, 2010, 2(8):556-564.
doi: 10.1039/c003484c URL |
[3] |
Hung I H, Casareno R L B, Labesse G, et al. HAH1 is a copper binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense[J]. Journal of Biological Chemistry, 1998, 273(3):1749-1754.
pmid: 9430722 |
[4] |
Chu C C, Lee W C, Guo W Y, et al. A Copper Chaperone for Superoxide Dismutase That Confers Three Types of Copper/Zinc Superoxide Dismutase Activity in Arabidopsis[J]. Plant Physiology, 2005, 139(1):425-436.
doi: 10.1104/pp.105.065284 URL |
[5] |
Dykema P E, Sipes P R, Marie A, et al. A new class of proteins capable of biding transition metals[J]. Plant Molecular Biology, 1999, 41(1):139-150.
pmid: 10561075 |
[6] |
Yalovsky S, Rodriguez-Concepcion M, Gruissem W. Lipid modifications of proteins-slipping in and out of membranes[J]. Trends in Plant Science, 1999, 4(11):439-445.
pmid: 10529825 |
[7] |
Radakovic Z S, Anjam M S, Escobar E, et al. Arabidopsis HIPP27 is a host susceptibility gene for the beet cyst nematode Heterodera schachtii[J]. Molecular Plant Pathology, 2018, 19(8):1917-1928.
doi: 10.1111/mpp.2018.19.issue-8 URL |
[8] |
Zschiesche W, Barth O, Daniel K, et al. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana[J]. New Phytologist, 2015, 207(4):1084-1096.
doi: 10.1111/nph.2015.207.issue-4 URL |
[9] |
Shalini T, Charu L. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview[J]. Frontiers in Plant Science, 2018, 9:452.
doi: 10.3389/fpls.2018.00452 pmid: 29681916 |
[10] | Hakeem , Rehman K. Heavy Metal Stress and Crop Productivity[M]. Springer International Publishing, 2015:1-25. |
[11] |
Salla V, Hardaway C J, Sneddon J. Preliminary investigation of Spartina alterniflora for phytoextraction of selected heavy metals in soils from Southwest Louisiana[J]. Microchemical Journal, 2010, 97(2):207-212.
doi: 10.1016/j.microc.2010.09.005 URL |
[12] |
Xie L, Hao P, Cheng Y, et al. Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice[J]. Ecotoxicology and Environmental Safety, 2018, 162:71-76.
doi: 10.1016/j.ecoenv.2018.06.072 URL |
[13] |
Xiong T, Leveque T, Shahid M, et al. Lead and Cadmium Phytoavailability and Human Bioaccessibility for Vegetables Exposed to Soil or Atmospheric Pollution by Process Ultrafine Particles[J]. Journal of Environmental Quality, 2014, 43(5):1593-1600.
doi: 10.2134/jeq2013.11.0469 URL |
[14] |
Pierart A, Shahid M, Séjalon-Delmas N, et al. Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures[J]. Journal of Hazardous Materials, 2015, 289:219-234.
doi: 10.1016/j.jhazmat.2015.02.011 URL |
[15] |
Sytar O, Kumar A, Latowski D, et al. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants[J]. Acta Physiologiae Plantarum, 2013, 35(4):985-999.
doi: 10.1007/s11738-012-1169-6 URL |
[16] |
Suzuki N, Yamaguchi Y, Koizumi N, et al. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis[J]. The Plant Journal, 2002, 32(2):165-173.
doi: 10.1046/j.1365-313X.2002.01412.x URL |
[17] |
Zhang X, Feng H, Feng C, et al. Isolation and characterisation of cDNA encoding a wheat heavy metal-associated isoprenylated protein involved in stress responses[J]. Plant Biology, 2015, 17(6):1176-1186.
doi: 10.1111/plb.12344 pmid: 25951496 |
[18] |
Barth O, Vogt S, Uhlemann R, et al. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29[J]. Plant Molecular Biology, 2009, 69(1):213-226.
doi: 10.1007/s11103-008-9419-0 URL |
[19] | 刘大丽. 谷胱甘肽合成相关酶在重金属污染生物修复中的分子机制及比较研究[D]. 哈尔滨:东北林业大学, 2013. |
[20] |
Samiksha S, Parul P, Rachana S, et al. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics[J]. Frontiers in Plant Science, 2015, 6:1143.
doi: 10.3389/fpls.2015.01143 pmid: 26904030 |
[21] |
Yang X, Feng Y, He Z, et al. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation[J]. Journal of Trace Elements in Medicine and Biology, 2005, 18(4):339-353.
doi: 10.1016/j.jtemb.2005.02.007 URL |
[22] |
Zouboulis A I, Loukidou M X, Matis K A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils[J]. Process Biochemistry, 2004, 39(8):909-916.
doi: 10.1016/S0032-9592(03)00200-0 URL |
[23] |
Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?[J]. Plant Science, 2011, 180(2):169-181.
doi: 10.1016/j.plantsci.2010.08.016 URL |
[24] |
Rubino J T, Franz K J. Coordination chemistry of copper proteins: how nature handles a toxic cargo for essential function[J]. Journal of Inorganic Biochemistry, 2012, 107(1):129-143.
doi: 10.1016/j.jinorgbio.2011.11.024 URL |
[25] |
Gao W, Xiao S, Li H Y, et al. Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6[J]. New Phytologist, 2009, 181(1):89-102.
doi: 10.1111/nph.2009.181.issue-1 URL |
[1] | ZHOU Wanting, WANG Man, ZHOU Xiang, GAO Zhuo, LI Jiajia, LI Wangsheng, LI Siqi, WANG Xueqian, WANG Luhong, LIU Dali. BvGSTU9 Gene in Sugar Beet: Bioinformatics and Expression Analysis Under Cadmium Stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 111-118. |
[2] | Wang Man, Zhou Wanting, Zhou Xiang, Li Siqi, Wang Xueqian, Wang Luhong, Li Wangsheng, Li Jiajia, Gao Zhuo, Liu Dali. Transcription Factor BvMYB44 Gene in Energy Beet: Expression Characteristics in Response to Cadmium Stress and Its Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 25-33. |
[3] | Liu Xiaozhou, Zhang Xinjian, Yi Huilin, Zhou Renchao, Tan Guangwen. The Cadmium and Lead Tolerance of Six Species of Melastoma Plants During Germination [J]. Chinese Agricultural Science Bulletin, 2020, 36(31): 42-48. |
[4] | . The Response of Energy Beet BvGST Gene to Cadmium Stress in Escherichia coli [J]. Chinese Agricultural Science Bulletin, 2019, 35(36): 116-121. |
[5] | . A Comparative Analysis of the Abilities to Produce Ergosterol, Pigment and Citrinin by Different Monascus Strains [J]. Chinese Agricultural Science Bulletin, 2019, 35(3): 51-57. |
[6] | 樊琼 and 王灏琦. Effects on Growth Performance, Immune Organ Indices and Intestinal Flora of Quails: Yeast Culture [J]. Chinese Agricultural Science Bulletin, 2019, 35(24): 144-149. |
[7] | . Cadmium Stress: Effects on Growth and Cadmium Absorption of Chamaecrista rotundifolia Seedlings [J]. Chinese Agricultural Science Bulletin, 2018, 34(3): 93-97. |
[8] | . The Validation Research on Interaction Between PRRSV 2b Protein and LGALS1 [J]. Chinese Agricultural Science Bulletin, 2018, 34(29): 112-117. |
[9] | . The Yeasts from Tibetan Kefir: Comparison of Glutathione Production and Extraction Optimization [J]. Chinese Agricultural Science Bulletin, 2018, 34(24): 77-81. |
[10] | . Effects of Cadmium Stress on the Growth and Development of Wheat [J]. Chinese Agricultural Science Bulletin, 2018, 34(23): 26-32. |
[11] | . Path Analysis of Soil Physicochemical Factors and Catalase Activities Under Cadmium Stress [J]. Chinese Agricultural Science Bulletin, 2018, 34(11): 59-65. |
[12] | . The Interaction Between SFB and S-RNase Protein Controlling Self-incompatibility in Xinjiang Wild Almond (Prunus tenella Batsch.) [J]. Chinese Agricultural Science Bulletin, 2017, 33(14): 33-38. |
[13] | Sun Yali,Xu Qingguo,刘红梅 and Jia Wei. Advance in Cadmium Stress on Rice and Its Regulation and Control Technology [J]. Chinese Agricultural Science Bulletin, 2017, 33(10): 1-6. |
[14] | Li Yumei,Wang Genlin,Liu Zhengyu,Li Yan,Sun Lei and Wei Dan. Screening and Optimized Culture of Selenium-enriched Saccharomyces cerevisiae [J]. Chinese Agricultural Science Bulletin, 2016, 32(26): 75-79. |
[15] | . Yeast One-hybrid Library Construction and Upstream Gene Analysis of MeAP2-2 in Cassava Under Drought Condition. [J]. Chinese Agricultural Science Bulletin, 2015, 31(9): 119-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||