Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (30): 89-97.doi: 10.11924/j.issn.1000-6850.casb2020-0831
Previous Articles Next Articles
Chai Pengpei(), Han Suoyi, Cui Mengjie, Guo Junjia, Huang Bingyan, Dong Wenzhao, Zhang Xinyou(
)
Received:
2020-12-15
Revised:
2021-04-13
Online:
2021-10-25
Published:
2021-12-08
Contact:
Zhang Xinyou
E-mail:775853198@qq.com;haasz@126.com
CLC Number:
Chai Pengpei, Han Suoyi, Cui Mengjie, Guo Junjia, Huang Bingyan, Dong Wenzhao, Zhang Xinyou. Physiological and Biochemical Mechanisms of Anti-Aspergillus flavus in Peanuts: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 89-97.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0831
[64] |
Hegedüs N, Marx F. Antifungal proteins: More than antimicrobials?[J]. Fungal Biology Reviews, 2013, 26(4):132-145.
doi: 10.1016/j.fbr.2012.07.002 URL |
[65] |
Gao A G, Hakimi S M, Mittanck C A, et al. Fungal pathogen protection in potato by expression of a plant defensin peptide[J]. Nature Biotechnology, 2001, 18(12):1307-1310.
doi: 10.1038/82436 URL |
[66] |
Anuradha T S, Divya K, Jami S K, et al. Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens[J]. Plant Cell Reports, 2008, 27(11):1777-1786.
doi: 10.1007/s00299-008-0596-8 pmid: 18758784 |
[67] | Shah D, Kaur J, Islam T, et al. Antifungal plant defensins MtDef4 and MtDef5: Mechanisms of action and engineering transgenic peanut resistant to Aspergillus flavus and aflatoxin accumulation[C]. 16th Naples Workshop on Bioactive Peptides, Naples, Italy, 2018, June 7-9. |
[68] | 李万福, 刘海燕, 钟旎, 等. 花生防御素基因的克隆及原核表达[J]. 基因组学与应用生物学, 2009, 28(4):645-650. |
[69] | Sharma K K, Pothana A, Prasad K, et al. Peanuts that keep aflatoxin at bay: a threshold that matters[J]. Plant Biotechnology Journal, 2018, 16(5):1023-1033. |
[70] |
Youle R J, Huang A H C . Occourrence of low molecular weight and high cysteine containing albumin storage protein in oilseed of diverse species[J]. American Journal of Botany, 1981, 68(1):44-48.
doi: 10.1002/ajb2.1981.68.issue-1 URL |
[71] | Shewry P R, Casey R. Seed Proteins[C]. Kluwer Academic Publishers, Dordrecht Boston London, 1999:563-586. |
[72] | Terras F R G, Schoofs H M E, Bolle M F C D, et al. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds[J]. The Journal of Biological Chemsity, 1992, 267(22):15301-15309. |
[73] |
Maria-Neto S, Honorato R V, Costa F T, et al. Bactericidal Activity Identified in 2S Albumin from Sesame Seeds and In silico Studies of Structure-Function Relations[J]. Protein Journal, 2011, 30(5):340-350.
doi: 10.1007/s10930-011-9337-x pmid: 21691771 |
[74] | Odintsova T, Rogozhin E, Sklyar I, et al. Antifungal Activity of Storage 2S Albumins from Seeds of the Invasive Weed Dandelion Taraxacum officinale Wigg[J]. Protein & Peptide Letters, 2010, 17(4):522-529. |
[75] | Duan X H, Jiang R, Wen Y J, et al. Some 2S albumin from peanut seeds exhibits inhibitory activity against Aspergillus flavus[J]. Plant Physiology & Biochemistry, 2013, 66(Complete):84-90. |
[76] | 张莉, 汪东风, 张宾, 等. 豆类植物蛋白酶抑制剂研究进展[J]. 大豆科学, 2006, 25(3):314-319. |
[77] |
Guo B, Russin J S, Cleveland T E. Evidence for cutinase production by Aspergillus flavus and its possible role in infection of corn kernels[J]. Phytopathology, 1996, 86(8):824-829.
doi: 10.1094/Phyto-86-824 URL |
[78] | Mellon J E, Cotty P J. Purification and partial characterization of an elastinolytic proteinase from Aspergillus flavus culture filtrates[J]. Applied Microbiology & Biotechnology, 1996, 46(2):138-142. |
[79] |
Chen Z Y, Brown R L, Lax A R, et al. Resistance to Aspergillus flavus in Corn Kernels Is Associated with a 14-kDa Protein[J]. Phytopathology, 1998, 88(4):276-281.
doi: 10.1094/PHYTO.1998.88.4.276 pmid: 18944949 |
[80] |
Fakhoury A M, Woloshuk C P. Inhibition of growth of Aspergillus flavus and fungal alpha-amylases by a lectin-like protein from Lablab purpureus[J]. Molecular Plant Microbe Interactions, 2001, 14(8):955-961.
doi: 10.1094/MPMI.2001.14.8.955 URL |
[81] |
Woloshuk C P, Cavaletto J R, Cleveland T E. Inducers of aflatoxin biosynjournal from colonized maize kernels are generated by an amylase activity from Aspergillus flavus[J]. Phytopathology, 1997, 87:164-169.
pmid: 18945137 |
[82] |
Zhang B, Wang D F, Wu H, et al. Inhibition of endogenous α-amylase and protease of Aspergillus flavus by trypsin inhibitor from cultivated and wild-type soybean[J]. Annals of Microbiology, 2010, 60(3):405-414.
doi: 10.1007/s13213-010-0056-x URL |
[83] | 梁炫强, 潘瑞炽, 周桂元. 花生种子胰蛋白酶抑制剂与抗黄曲霉侵染的关系[J]. 作物学报, 2003, 29(2):295-299. |
[1] |
Settaluri V S, Kandala C V K, Puppala N , et al. Peanuts and their nutritional aspects-a review[J]. Food and Nutrition Sciences, 2012, 3(12):1644-1650.
doi: 10.4236/fns.2012.312215 URL |
[2] |
Burow M D, Simpson C E, Starr J L, et al. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): Broadening the gene pool of a monophyletic polyploid species[J]. Genetics, 2001, 159(2):823-37.
pmid: 11606556 |
[84] |
Helm K W, Lafayette P R, Nagao R T, et al. Localization of small heat shock proteins to the higher plant endomembrane system[J]. Molecular and Cellular Biology, 1993, 13(1):238-247.
doi: 10.1128/mcb.13.1.238-247.1993 pmid: 8417329 |
[85] |
Su P H, Li H M. Arabidopsis Stromal 70-kD Heat Shock Proteins Are Essential for Plant Development and Important for Thermotolerance of Germinating Seeds[J]. Plant Physiology, 2008, 146(3):1231-1241.
doi: 10.1104/pp.107.114496 URL |
[3] | Farombi E O. Aflatoxin contamination of foods in developing countries: implications for hepatocellular carcinoma and chemopreventive strategies[J]. African Journal of Biotechnology, 2006, 5(1):1-14. |
[4] |
Hedayati M T, Pasqualotto A C, Warn P A, et al. Aspergillus flavus: human pathogen, allergen and mycotoxin producer[J]. Microbiology, 2007, 153(6):1677-1692.
doi: 10.1099/mic.0.2007/007641-0 URL |
[86] |
Bernoux M, Ve T, Williams S, et al. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation[J]. Cell Host Microbe. 2011: 9:200-211.
doi: S1931-3128(11)00065-5 pmid: 21402359 |
[87] |
Wirk B. Heat Shock Protein Inhibitors for the Treatment of Fungal Infections[J]. Recent Patents on Anti Infective Drug Discovery, 2011, 6(1):38-44.
doi: 10.2174/157489111794407840 URL |
[88] |
Clevenger J, Marasigan K, Liakos V, et al. RNA sequencing of contaminated seeds reveals the state of the seed permissive for pre-harvest aflatoxin contamination and points to a potential susceptibility factor[J]. Toxins, 2016, 8:317-334.
doi: 10.3390/toxins8110317 URL |
[89] |
Korani W, Chu Y, Holbrook C C, et al. Insight into genes regulating postharvest aflatoxin contamination of tetraploid peanut from transcriptional profiling[J]. Genetics, 2018, 209:143-156.
doi: 10.1534/genetics.118.300478 pmid: 29545468 |
[90] | Nayak S N, Agarwal G, Pandey M K, et al. Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in-vitro seed colonization[J]. Scientific Report, 2017, 7:9659-9672. |
[91] | Senakoon W, Nuchadomrong S, Chiou Y Y, et al. Identification of peanut seed prolamins with an antifungal role by 2D-GE and drought treatment[J]. Bioence Biotechnology and Biochemistry, 2015, 79(11):1-8. |
[92] |
Senakoon W, Nuchadomrong S, Senawong G, et al. An Alternate Fractionation of Peanut Seed Proteins in Association with Inhibitory Assay on Aspergillus flavus[J]. APCBEE Procedia, 2012, 4:42-47.
doi: 10.1016/j.apcbee.2012.11.008 URL |
[93] | 欧阳光察, 薛应龙. 植物苯丙烷类代谢的生理意义及其调控[J]. 植物生理学通讯, 1988(03):11-18. |
[5] | Henry S H, Bosch F X, Bowers J C. Aflatoxin, hepatitis and worldwide liver cancer risks[J]. mycotoxins and food safety, 2002, 504(48):229-233. |
[6] | 史军, 王金水, 刘进玺, 等. 花生毒素种类及脱毒方法研究进展[J]. 粮食与油脂, 2006(2):48-50. |
[94] |
Firozi P F, Bhattacharya R K. Effects of natural polyphenols on aflatoxin B1 activation in a reconstituted microsomal monooxygenase system[J]. Journal of Biochemical Toxicology, 1995, 10(1):25-31.
pmid: 7595929 |
[95] | Chipley J R, Uraih N. Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid[J]. Applied & Environmental Microbiology, 1980, 40(2):352-357. |
[7] |
Horn B W, Moore G G, Carbone I. Sexual reproduction in Aspergillus flavus [J]. Mycologia, 2009, 101:423-429.
doi: 10.3852/09-011 URL |
[8] | Yin Y N, Yan L Y, Jiang J H, et al. Biological control of aflatoxin contamination of crops[J]. Journal of Zhejiang University ENCE B, 2008, 9(10):787-792. |
[96] | 于明革, 杨洪强, 翟衡. 植物木质素及其生理学功能[J]. 山东农业大学学报:自然科学版, 2003(01):124-128. |
[97] | Devadas S K, Raina R. Preexisting systemic acquired resistance suppresses hypersensitive response-associated cell death in Arabidopsis hrl1 mutant[J]. Plant Physiol, 2002(128):1234-1244. |
[9] |
Liao B, Zhuang W, Tang R, et al. Peanut aflatoxin and genomics research in China: progress and perspectives[J]. Peanut Science, 2009, 36(1):21-28.
doi: 10.3146/AT07-004.1 URL |
[10] | 武琳霞. 中国花生黄曲霉毒素污染风险预警模型研究[D]. 北京:中国农业科学院, 2019. |
[98] |
Radojicic A, Li X, Zhang Y. Salicylic Acid:A Double-Edged Sword for Programed Cell Death in Plants[J]. Frontiers in Plant Science, 2018, 9:1133-1137.
doi: 10.3389/fpls.2018.01133 URL |
[99] |
Bai W, Chern M, Ruan D, et al. Enhanced disease resistance and hypersensitivity to BTH by introduction of an NH1/OsNPR1 paralog[J]. Plant Biotechnology Journal, 2011, 9(2):205-215.
doi: 10.1111/pbi.2010.9.issue-2 URL |
[11] | 王守经, 祝清俊, 胡鹏, 等. 花生及其制品的黄曲霉毒素污染与防控措施[J]. 中国食物与营养, 2010(3):14-16. |
[12] |
Firozi P F, Bhattacharya R K. Effects of natural polyphenols on aflatoxin B1 activation in a reconstituted microsomal monooxygenase system[J]. Journal of Biochemical Toxicology, 1995, 10(1):25-31.
pmid: 7595929 |
[100] | 王晨芳, 马青, 杜虎平, 等. BTH诱导黄瓜抗炭疽病效果初探[J]. 中国农学通报, 21(5):337-347. |
[101] | Ananieva E A, Christov K N, Popova L P. Exogenous treatment with Salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to Paraquat[J]. Journal of Plant Physiology, 2004:319-328. |
[13] |
Fajardo J E, Waniska R D, Cuero R G, et al. Phenolic compounds in peanut seeds: Enhanced elicitation by chitosan and effects on growth and aflatoxin B1 production by Aspergillus flavus[J]. Food Biotechnology, 1995, 9(1-2):59-78.
doi: 10.1080/08905439509549885 URL |
[14] |
Schmidlin L, Poutaraud A, Claudel P, et al. A Stress-Inducible Resveratrol O-Methyltransferase Involved in the Biosynjournal of Pterostilbene in Grapevine[J]. Plant Physiology, 2008, 148(3):1630-1639.
doi: 10.1104/pp.108.126003 pmid: 18799660 |
[15] | 王琴飞, 王明, 李莉萍, 等. 花生种子中芪化物的合成与抗黄曲霉菌产毒的相关性研究[J]. 热带作物学报, 2015, 36(2):344-352. |
[16] |
Wang H M, Huang J Q, Lei Y, et al. Relationship of Resveratrol Content and Resistance to Aflatoxin Accumulation Caused by Aspergillus flavus in Peanut Seeds[J]. Acta Agronomica Sinica, 2012, 38(10):1875-1883.
doi: 10.3724/SP.J.1006.2012.01875 URL |
[102] | 王星, 罗双霞, 于萍, 等. 茄科蔬菜苯丙烷类代谢及相关酶基因研究进展[J]. 园艺学报, 2017, 44(9):1738-1748. |
[103] | 梁炫强, 周桂元, 潘瑞炽. 花生种子受黄曲霉菌侵染后若干生化成份的变化及其与抗性的关系[J]. 中国油料作物学报, 2001, 23(2):26-30. |
[104] | 朱敦玮. 花生对黄曲霉抗性的生理特性研究[D]. 福州:福建农林大学, 2015. |
[17] |
Wang H M, Lei Y, Yan L Y, et al. Deep sequencing analysis of transcriptomes in Aspergillus flavus in response to resveratrol[J]. BMC Microbiology, 2015, 15(1):182-195.
doi: 10.1186/s12866-015-0513-6 URL |
[18] | Arichi H, Kimura Y, Okuda H, et al. Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. et Zucc. on lipid metabolism[J]. Chemical & Pharmaceutical Bulletin, 1982, 30(5):1766-1770. |
[105] | Nandini D, Bariya H. Induction of systemic acquired resistance in Arachis hypogaea L. by aspergillus flavus derived elicitors[J]. Journal of Cell and Tissue Research, 2014, 14(2):4395-4403. |
[106] | 傅爱根. 活性氧在植物抗病反应中的作用[J]. 热带亚热带植物学报, 2000, 1(8):70-80. |
[19] |
Sobolev V S, Neff S A, Gloer J B. New Stilbenoids from Peanut (Arachis hypogaea) Seeds Challenged by an Aspergillus caelatus Strain[J]. Journal of Agricultural and Food Chemistry, 2009, 57(1):62-68.
doi: 10.1021/jf802891v pmid: 19063668 |
[20] | Sobolev V S, Neff S A, Gloer J B. New dimeric stilbenoids from fungal-challenged peanut (Arachis hypogaea) seeds[J]. Journal of Agricultural & Food Chemistry, 2010, 58(2):875-81. |
[107] |
Keppler L D. O2-Initiated Lipid Peroxidation in a Bacteria-Induced Hypersensitive Reaction in Tobacco Cell Suspensions[J]. Phytopathology, 1989, 79(5):555-562.
doi: 10.1094/Phyto-79-555 URL |
[108] |
Burow G B, Gardner H W, Keller N P. A peanut seed lipoxygenase responsive to Aspergillus colonization[J]. Plant Molecular Biology, 2000, 42(5):689-701.
pmid: 10809442 |
[21] | Sobolev V S, Krausert N M, Gloer J B. New Monomeric Stilbenoids from Peanut (Arachis hypogaea) Seeds Challenged by an Aspergillus flavus Strain[J]. Journal of Agricultural & Food Chemistry, 2016, 64(3):579-584. |
[22] |
Huang W Y, Cai Y Z, Zhang Y. Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention[J]. Nutrition and Cancer, 2010, 62(1):1-21.
doi: 10.1080/01635580903191585 URL |
[23] |
Ahn Y J, Lee H S, Oh H S, et al. Antifungal activity and mode of action of Galla rhois-derived phenolics against phytopathogenic fungi[J]. Pesticide Biochemistry and Physiology, 2005, 81(2):105-112.
doi: 10.1016/j.pestbp.2004.10.003 URL |
[24] | Field J A, Lettinga G. Toxicity of tannic compounds to microorganisms[J]. Plant Polyphenols, 1992, 59:673-692. |
[109] | Meimaroglou D M, Dia G, Panagiota M. Study of the Effect of Methyl Jasmonate Concentration on Aflatoxin B1 Biosynjournal by Aspergillus parasiticus in Yeast Extract Sucrose Medium[J]. International Journal of Microbiology, 2009, 10(15):842626-842633. |
[110] |
Zeringue H J. Effects of methyl jasmonate on phytoalexin production and aflatoxin control in the developing cotton boll[J]. Biochemical Systematics and Ecology, 2002, 30(6):497-503.
doi: 10.1016/S0305-1978(01)00125-9 URL |
[25] |
Henis Y, Tagari H, Volcani R. Effect of Water Extracts of Carob Pods, Tannic Acid, and Their Derivatives on the Morphology and Growth of Microorganisms[J]. Applied microbiology, 1964, 12(3):204-209.
doi: 10.1128/am.12.3.204-209.1964 URL |
[26] |
Sulieman A E, Issa M F, Elkhalifa E A. Quantitative determination of tannin content in some sorghum cultivars and evaluation of its antimicrobial activity[J]. Research Journal of Microbiology, 2007, 2(3):284-288.
doi: 10.3923/jm.2007.284.288 URL |
[111] | 梁炫强, 潘瑞炽, 周桂元. 活性氧及膜质过氧化与花生抗黄曲霉侵染的关系[J]. 中国油料作物学报, 2002, 24(4):19-23. |
[27] |
Achmad, Firmansyah M A, Soekarno B P W, et al. Effects of Tannin to Control Leaf Blight Disease on Toona sureni Merr. Caused by Two Isolates of Rhizoctonia sp.[J]. Plant Pathology Journal, 2015, 14:148-152.
doi: 10.3923/ppj.2015.148.152 URL |
[28] | Saura-Calixto F, Perez-Jimenez J. Tannins: bioavailability and mechanisms of action[M]. Chemoprevention of Cancer and DNA Damage by Dietary Factors, Wiley-VCH Verlag GmbH & Co. KGaA, 2009:499-508 |
[29] |
Zhu C, Lei M, Andargie M, et al. Antifungal activity and mechanism of action of tannic acid against Penicillium digitatum[J]. Physiological and Molecular Plant Pathology, 2019, 107:46-50.
doi: 10.1016/j.pmpp.2019.04.009 URL |
[30] |
Stansbury M F, Field E T, Guthrie J D. The tannin and related pigments in the red skins (Testa) of peanut kernels[J]. Journal of the American Oil Chemists Society, 1950, 27(8):317-321.
doi: 10.1007/BF02649320 URL |
[31] | Carter J B H. Studies on the growth of Aspergillus flavus on groundnut kernels[D]. London: Univ. of Reading, 1970:170-171. |
[32] |
Sanders T H, Mixon A C. Effect of peanut tannins on percent seed colonization and in vitro growth by Aspergillus parasiticus[J]. Mycopathologia, 1979, 66(3):169-173.
pmid: 440404 |
[33] |
Lansden J A. Aflatoxin inhibition and fungistasis by peanut tannins[J]. Peanut Science, 1982, 9(1):17-20.
doi: 10.3146/i0095-3679-9-1-5 URL |
[34] |
Williams C A, Grayer, Renée J. Anthocyanins and other flavonoids[J]. Natural Product Reports, 2004, 21(4):539-73.
doi: 10.1039/b311404j URL |
[35] | Francis A R, Shetty T K, Bhattacharya R K. Modifying role of dietary factors on the mutagenicity of aflatoxin B1: in vitro effect of plant flavonoids[J]. Mutation Research/Genetic Toxicology, 1989:393-401 |
[36] |
Sanz L, Fernandez-Marcos M, Modrego A, et al. Nitric Oxide Plays a Role in Stem Cell Niche Homeostasis through Its Interaction with Auxin[J]. Plant Physiology, 2014, 166(4):1972-1984.
doi: 10.1104/pp.114.247445 URL |
[37] |
Phillips M, Jones J, Furlanetto C. The role of flavonoids produced in response to cyst nematode infection of Arabidopsis thaliana[J]. Nematology, 2007, 9(5):671-677.
doi: 10.1163/156854107782024875 URL |
[38] |
Grunewald W, Smet I D, Lewis D R, et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5):1554-1559.
doi: 10.1073/pnas.1121134109 pmid: 22307611 |
[39] | Fountain J C, Raruang Y, Luo M, et al. Potential roles of WRKY transcription factors in regulating host defense responses during Aspergillus flavus infection of immature maize kernels[J]. Physiological & Molecular Plant Pathology, 2015, 89:31-40. |
[40] |
Wang H, Lei Y, Wan L, et al. Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus[J]. BMC Plant Biology, 2016, 16(1):1-16
doi: 10.1186/s12870-015-0700-5 URL |
[41] | Beschia M, Leonte A, Oancea I. Phenolic compounds with biological activity[M]. Bull. Univ. Galati Faso 1984, 6:23-27. |
[42] |
Li X M, Li Z Y, Wang Y D, et al. Quercetin Inhibits the Proliferation and Aflatoxins Biosynjournal of Aspergillus flavus[J]. Toxins, 2019, 11:154-167.
doi: 10.3390/toxins11030154 URL |
[43] |
Norton R A. Inhibition of aflatoxin B1 biosynjournal in Aspergillus flavus by anthocyanidins and related flavonoids[J]. Journal of Agricultural and Food Chemistry, 1999, 47(3):1230-1235.
pmid: 10552442 |
[44] |
Turner R B, Lindsey D L, Davis D D, et al. Isolation and identification of 5,7-dimethoxyisoflavone, an inhibitor of Aspergillus flavus from peanuts[J]. mycopathologia, 1975, 57(1):39-40.
pmid: 813148 |
[45] | 王勇刚, 曾富华, 吴志华, 等. 植物诱导抗病与病程相关蛋白[J]. 湖南农业大学学报:自然科学版, 2002, 28(2):177-182. |
[46] |
Loon V L C. The nomenclature of pathogenesis-related proteins[J]. Physiological and Molecular Plant Pathology, 1990, 37(3):229-230.
doi: 10.1016/0885-5765(90)90014-O URL |
[47] |
Adams D J. Fungal cell wall chitinases and glucanases[J]. Microbiology, 2004, 150(7):2029-2035.
doi: 10.1099/mic.0.26980-0 URL |
[48] | Zhu Q, Maher E A, Masoud S, et al. Enhanced Protection Against Fungal Attack by Constitutive Co-expression of Chitinase and Glucanase Genes in Transgenic Tobacco[J]. Biotechnology, 1994, 12(8):807-812. |
[49] |
Cordero M J, Raventos D, San Segundo B. Differential expression and induction of chitinases and β-1,3-glucanases in response to fungal infection during germination of maize seeds[J]. Mol Plant Microbe Interact, 1994, 7:23-31
doi: 10.1094/MPMI-7-0023 URL |
[50] | Sharma K K, Waliyar F, Lava K P, et al. Development and evaluation of transgenic groundnut expressing the rice chitinase gene for resistance to Aspergillus flavus[C]. In International conference on groundnut Aflatoxin management & Genomics,(Guangdong, China) held on 5-9 November, 2006: 88. |
[51] |
Sundaresha S, Kumar A M, Rohini S, et al. Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β-1,3-glucanases[J]. European Journal of Plant Pathology, 2010, 126(4):497-508.
doi: 10.1007/s10658-009-9556-6 URL |
[52] |
Liang X Q, Holbrook C C, Lynch R E, et al. β-1,3-Glucanase activity in peanut seed (Arachis hypogaea) is induced by inoculation with Aspergillus flavus and copurifies with a conglutin-like protein[J]. Phytopathology 2005, 95:506-511.
doi: 10.1094/PHYTO-95-0506 pmid: 18943315 |
[53] | Qiao L X, Ding X, Wang H C, et al. Characterization of the β-1,3-glucanase gene in peanut (Arachis hypogaea L.) by cloning and genetic transformation[J]. genetics & molecular research gmr, 2014, 13(1):1893-1904. |
[54] |
Christensen A B, Cho B H, Michael N, et al. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins[J]. Molecular Plant Pathology, 2002, 3(3):135-144.
doi: 10.1046/j.1364-3703.2002.00105.x pmid: 20569319 |
[55] | Walter M H, Liu J W, Grand C, et al. Bean pathogenesis-related (PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens[J]. Molecular & General Genetics, 1990, 222(2-3):353-360. |
[56] |
Das C R H. A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal activity[J]. Planta, 2006, 225(1):213-222.
doi: 10.1007/s00425-006-0344-7 URL |
[57] |
Chen Z Y, Brown R L, Damann K E, et al. PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production[J]. Molecular Plant Pathology, 2010, 11(1):69-81.
doi: 10.1111/mpp.2010.11.issue-1 URL |
[58] |
Luo M, Liang X Q, Dang P, et al. Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress[J]. Plant Science, 2005, 169(4):695-703.
doi: 10.1016/j.plantsci.2005.05.020 URL |
[59] |
Guo B, Chen X, Dang P, et al. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection[J]. BMC Developmental Biology, 2008, 8:1-16.
doi: 10.1186/1471-213X-8-1 URL |
[60] |
Xie C, Wen S, Liu H, et al. Overexpression of ARAhPR10, a Member of the PR10 Family, Decreases Levels of Aspergillus flavus Infection in Peanut Seeds[J]. American Journal of Plant Sciences, 2013, 4(3):602-607.
doi: 10.4236/ajps.2013.43079 URL |
[61] | 廖乾生, 林福呈, 李德葆. 植物防御素及其研究进展[J]. 浙江大学学报:农业与生命科学版, 2003, 29(1):113-118. |
[62] |
Pelegrini P B, Franco O L. Plant Gamma-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins[J]. The international journal of biochemistry & cell biology, 2005, 37(11):2239-2253.
doi: 10.1016/j.biocel.2005.06.011 URL |
[63] |
Wilmes M, Cammue B P O, Sahl H G, et al. Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation[J]. Natural Product Reports, 2011, 28(8):1350-1358.
doi: 10.1039/c1np00022e URL |
[1] | WANG Fang, QIAO Shuai, YANG Songtao, SONG Wei, LIAO Anzhong, TAN Wenfang. Starch Type Sweet Potato Cultivar ‘Chuanshu231’: Breeding and Superior Characteristics [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 16-21. |
[2] | GAO Wei, ZHANG Jun, HAO Xi, LIU Juan, ZANG Xiuwang. Regional Change of Peanut Production in Henan Province [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 22-30. |
[3] | KANG Yunqiang, LI Lingling, XIE Junhong, ZHANG Jian, DU Changliang, ZECHARIAH Effah. Adaptability and Wind Erosion Resistance of Winter Rapeseed in Semi-arid Area of Central Gansu [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 31-36. |
[4] | QIN Naiqun, MA Qiaoyun, GAO Jingwei, YANG Pu, CAI Jinlan, HAO Yingchun, LI Yanmei, JI Hongce, LIAO Xiangzheng. Effects of Biogas Residue Application on Nutrient and Heavy Metal Content in Soil and Yield of Crops Under Peanut-wheat Rotation [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 58-63. |
[5] | ZHENG Benchuan, ZHANG Jinfang, JIANG Jun, CUI Cheng, CHAI Liang, HUANG Youtao, ZHOU Zhengjian, LI Haojie, JIANG Liangcai. Correlation Analysis of Main Traits and Yield of Brassica napus ‘Chuanyou’ Varieties with Different Maturity Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 7-17. |
[6] | DONG Hongye, XU Ting, LIU Wenhao, LI Qiang, LIU Yantao. Peanut in the Southeastern Margin of Tarim Basin of Xinjiang: Analysis and Comprehensive Evaluation of Main Agronomic Traits [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 26-30. |
[7] | LIANG Zengji, MU Fang, WANG Nan. Evolution and Prospect of Wheat Breeding in Weibei Rainfed Highland Region of China [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 8-14. |
[8] | HE Mengxia, CUI Shunli, ZHENG Baozhi, BI Zhile, LU Suizeng, QI Liya, LI Xinna, LIU Hong, HAN Peng, WANG Jin, LIU Lifeng. Suitable Density of Single-seed Precision Sowing for Peanut Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 23-27. |
[9] | LI Shuang, ZHANG Xiaojun, WANG Ping, XU Yongju, HOU Rui, ZHU Xunlu, LIU Xing, ZHANG Xiangqiong, YUE Fuliang, LI Wenjun, ZHANG Xiaohong. Comparison of Peanut Sprout Output Coefficients Under Different Peanut Genetic Backgrounds [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 17-23. |
[10] | LI Zhou, YANG Yayun, DAI Luyuan, ZHANG Feifei, A Xinxiang, DONG Chao, WANG Bin, TANG Cuifeng. Rice Bacterial Blight Resistance Genes and Resistance-related Factors: A Review on Research and Utilization [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 91-99. |
[11] | LIU Yonghui, SHEN Yi, SHEN Yue, LIANG Man, CHEN Zhide. Sugar Accumulation Characteristics and Sucrose Metabolism Enzyme Activities of Peanut During Seed Development [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 29-34. |
[12] | CHEN Qingqing, WANG Chunlin, ZHANG Haishan, ZHANG Aifang. Rice Blast and Bacterial Blight of Regional Trial Rice Varieties in Anhui Province: Resistance Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 134-139. |
[13] | FAN Xian, QUAN Yiji, YANG Shaolin, LI Rudan, DENG Jun, ZHANG Yuebin. Identification and Evaluation of Drought Resistance in Sugarcane Seedling Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 17-24. |
[14] | WANG Shuo, JIA Xiaoqian, HE Lu, LI Haoran, WANG Hongguang, HE Jianning, LI Dongxiao, FANG Qin, LI Ruiqi. Response Mechanism of Crops to Drought Stress and Measures for Improving Drought Resistance of Crops: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 31-44. |
[15] | YANG Lulu, QIN Huawei. Study on Peanut Appearance Quality Detection Based on Color and Texture Features [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 151-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||