Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (29): 31-44.doi: 10.11924/j.issn.1000-6850.casb2021-1042
Special Issue: 生物技术
Previous Articles Next Articles
WANG Shuo(), JIA Xiaoqian, HE Lu, LI Haoran, WANG Hongguang, HE Jianning, LI Dongxiao, FANG Qin(
), LI Ruiqi
Received:
2021-11-03
Revised:
2022-01-27
Online:
2022-10-15
Published:
2022-10-14
Contact:
FANG Qin
E-mail:1342229002@qq.com;fangqinhebei@163.com
CLC Number:
WANG Shuo, JIA Xiaoqian, HE Lu, LI Haoran, WANG Hongguang, HE Jianning, LI Dongxiao, FANG Qin, LI Ruiqi. Response Mechanism of Crops to Drought Stress and Measures for Improving Drought Resistance of Crops: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 31-44.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-1042
外源生长调节剂类型 | 试验 环境 | 施用方法 | 作物 | 作用 | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|---|
褪黑素 | 温室 | 棉花第一朵白花出现后,喷施100、 200 μmol褪黑素100 mL, 和干旱胁迫同时进行 | 棉花 (Gossypium hirsutum L.) | 调节花粉碳水化合物代谢, 改善干旱条件下棉花花粉活力 | [ | ||||
褪黑素 | 防雨棚 | 幼苗3叶期每天加入100 μmol褪黑素溶液200 mL,共7天, 之后进行干旱胁迫处理 | 油菜 (Brassica napus L.) | 促进主根和侧根的生长和气孔开放, 改善了光合能力,提高CAT活性 | [ | ||||
ABA | 大田环境 | 干旱处理后,开花期每天17点喷施 20 mg/L的ABA溶液(每平方米施用 500 mL),共4天 | 小麦 (Triticum aestivum L.) | 增加了叶片脯氨酸的积累,提高了叶片抗氧化酶(SOD、POD、CAT和APX)的活性,降低了玉米素/赤霉素、水杨酸、脱落酸、和精胺/亚精胺的比值, 延长了旗叶的功能期 | [ | ||||
BRs | 大田环境 | 在开花期或灌浆期水分胁迫前10天, 喷施0、0.05、0.1 mg/L的BR溶液2 L | 小麦 (Triticum aestivum L.) | 增加了脯氨酸的含量,降低了丙二醛的积累,减少了细胞膜脂质过氧化。0.1 mg/L的BR溶液效果最佳 | [ | ||||
BRs | 室内控制环境 | 对种子灭菌后用0.4 μmol 24-表油菜素内酯(EBR)溶液浸泡3 h,种子萌发后3天,将幼苗移植到0.4 μmol EBR溶液中处理24 h,之后用5%的甘露醇模拟干旱胁迫 | 小麦 (Triticum aestivum L.) | 增加了ABA,降低了IAA和CK的含量, 促进了脱氢蛋白(DHN)的积累 | [ | ||||
IBA | 室内控制环境 | 浓度为10-7 mol IBA、10-8 mol IBA、 10-11 mol的IBA溶液培养幼苗 | 玉米 (Zea mays L.) | 低浓度(10-11 mol)的IBA可以刺激根的生长,但不会影响细胞壁的发育;高浓度(10-7 mol)的IBA诱发了离根尖较近的质外屏障(凯氏带和木质部)的发育, 提高了根部木质素含量 | [ | ||||
多巴胺 | 室内控制环境 | 含有100 μmol的多巴胺营养液灌溉1 m高的苹果树苗,处理10天, 同时进行干旱胁迫 | 苹果 (Malus domestica Borkh) | 调控氮、次生化合物和氨基酸代谢相关基因的表达, 激活Ca2+通路,提高苹果的耐旱性 | [ | ||||
亚精胺(SPD) | 室内控制环境 | 浓度为0.05 mmol和0.1 mmol的Spd溶液培养幼苗2天,之后15% PEG-6000 模拟干旱胁迫 | 玉米 (Zea mays L.) | 外源施用SPD后,玉米幼苗叶绿体超微结构排列更加有序,增加了内源多胺、吲哚乙酸、玉米苷、赤霉素含量,降低了水杨酸含量。外源SPD可以缓解光合速率下降,减轻干旱对细胞结构与功能的损害。 0.1 mmol效果最佳 | [ | ||||
腐胺(PUT) | 室内控制环境 | 浓度为0.5 mmol的腐胺溶液中培养7天,同时用PEG模拟干旱胁迫 | 小麦 (Triticum aestivum L.) | 腐胺提高了叶片中游离水杨酸的含量,改变了类囊体膜中的脂肪酸组成,增加了植株地上部鲜重和净光合速率。同时脱氢酶,乙烯合成酶等一系列蛋白酶的 基因表达上升 | [ | ||||
硝普钠 | 室内控制环境 | 10% PEG溶液中加入50、100、250、 500 μmol的硝普钠溶液 | 甜叶菊 (Stevia rebaudiana (Bertoni) Hemsl.) | 加入硝普钠后减轻活性氧的危害,增加植株分枝数和分枝长度,有利于维持细胞内的离子平衡, 稳定渗透功能。50~100 μmol效果最好 | [ | ||||
脯氨酸 | 大田环境 | 植株移栽后的60天和75天各施用1次0、1、2 mmol的脯氨酸, 同时进行干旱胁迫 | 洋葱 (Allium cepa L.) | 外源脯氨酸增加了叶片相对含水量、光合效率和渗透保护剂的含量,1~2 mmol脯氨酸效果最好 | [ | ||||
SA | 温室 | 种子发芽一周后喷洒0.5 mmol的水杨酸溶液,分蘖至开花期进行干旱胁迫 | 小麦 (Triticum aestivum L.) | SA能够缓解膜电解质渗漏和膜脂过氧化, 提高抗氧化酶的活性,维持细胞膜的稳定性 | [ | ||||
SA | 温室 | 第1次于发芽后1周喷施0.5 mmol的SA溶液,第2、3次分别于干旱胁迫前24 h和后24 h喷施0.5 mmol的SA溶液 | 玉米 (Zea mays L.) | 喷施SA后增加了株高、地上部鲜重、叶面积、地上部干物质积累量、多胺含量、可溶性糖和碳水化合物的含量,提高了抗氧化酶的活性 | [ | ||||
茉莉酸甲酯 (MeJA) | 室内控制环境 | 浓度为0.1 μmol的MeJA处理3日龄的幼苗,培养24 h,之后用甘露醇模拟干旱胁迫 | 小麦 (Triticum aestivum L.) | 外源喷施MeJA增强了小麦TADHN基因的表达和脱氢蛋白酶的积累 | [ | ||||
MeJA | 室内控制环境 | 种子在0、2.5、5 mmol MeJA溶液中浸泡24 h,发芽后在光照培养箱中培养14天,之后用PEG模拟干旱胁迫 | 水稻 (Oryza sativa L.) | MeJA提高了叶片的水势,WUE和相对含水量, 降低了电导率,改变植株根茎组织中多重代谢产物的浓度,从而影响水稻种子的萌发和幼苗的生长 | [ | ||||
冠菌素(COR) | 大田环境 | 灌水前1周,喷施0.1 mol的COR溶液 | 小麦 (Triticum aestivum L.) | COR提高了叶片的光合参数和SPAD, COR还可以诱导根发育,增强冬小麦抗旱能力 | [ |
外源生长调节剂类型 | 试验 环境 | 施用方法 | 作物 | 作用 | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|---|
褪黑素 | 温室 | 棉花第一朵白花出现后,喷施100、 200 μmol褪黑素100 mL, 和干旱胁迫同时进行 | 棉花 (Gossypium hirsutum L.) | 调节花粉碳水化合物代谢, 改善干旱条件下棉花花粉活力 | [ | ||||
褪黑素 | 防雨棚 | 幼苗3叶期每天加入100 μmol褪黑素溶液200 mL,共7天, 之后进行干旱胁迫处理 | 油菜 (Brassica napus L.) | 促进主根和侧根的生长和气孔开放, 改善了光合能力,提高CAT活性 | [ | ||||
ABA | 大田环境 | 干旱处理后,开花期每天17点喷施 20 mg/L的ABA溶液(每平方米施用 500 mL),共4天 | 小麦 (Triticum aestivum L.) | 增加了叶片脯氨酸的积累,提高了叶片抗氧化酶(SOD、POD、CAT和APX)的活性,降低了玉米素/赤霉素、水杨酸、脱落酸、和精胺/亚精胺的比值, 延长了旗叶的功能期 | [ | ||||
BRs | 大田环境 | 在开花期或灌浆期水分胁迫前10天, 喷施0、0.05、0.1 mg/L的BR溶液2 L | 小麦 (Triticum aestivum L.) | 增加了脯氨酸的含量,降低了丙二醛的积累,减少了细胞膜脂质过氧化。0.1 mg/L的BR溶液效果最佳 | [ | ||||
BRs | 室内控制环境 | 对种子灭菌后用0.4 μmol 24-表油菜素内酯(EBR)溶液浸泡3 h,种子萌发后3天,将幼苗移植到0.4 μmol EBR溶液中处理24 h,之后用5%的甘露醇模拟干旱胁迫 | 小麦 (Triticum aestivum L.) | 增加了ABA,降低了IAA和CK的含量, 促进了脱氢蛋白(DHN)的积累 | [ | ||||
IBA | 室内控制环境 | 浓度为10-7 mol IBA、10-8 mol IBA、 10-11 mol的IBA溶液培养幼苗 | 玉米 (Zea mays L.) | 低浓度(10-11 mol)的IBA可以刺激根的生长,但不会影响细胞壁的发育;高浓度(10-7 mol)的IBA诱发了离根尖较近的质外屏障(凯氏带和木质部)的发育, 提高了根部木质素含量 | [ | ||||
多巴胺 | 室内控制环境 | 含有100 μmol的多巴胺营养液灌溉1 m高的苹果树苗,处理10天, 同时进行干旱胁迫 | 苹果 (Malus domestica Borkh) | 调控氮、次生化合物和氨基酸代谢相关基因的表达, 激活Ca2+通路,提高苹果的耐旱性 | [ | ||||
亚精胺(SPD) | 室内控制环境 | 浓度为0.05 mmol和0.1 mmol的Spd溶液培养幼苗2天,之后15% PEG-6000 模拟干旱胁迫 | 玉米 (Zea mays L.) | 外源施用SPD后,玉米幼苗叶绿体超微结构排列更加有序,增加了内源多胺、吲哚乙酸、玉米苷、赤霉素含量,降低了水杨酸含量。外源SPD可以缓解光合速率下降,减轻干旱对细胞结构与功能的损害。 0.1 mmol效果最佳 | [ | ||||
腐胺(PUT) | 室内控制环境 | 浓度为0.5 mmol的腐胺溶液中培养7天,同时用PEG模拟干旱胁迫 | 小麦 (Triticum aestivum L.) | 腐胺提高了叶片中游离水杨酸的含量,改变了类囊体膜中的脂肪酸组成,增加了植株地上部鲜重和净光合速率。同时脱氢酶,乙烯合成酶等一系列蛋白酶的 基因表达上升 | [ | ||||
硝普钠 | 室内控制环境 | 10% PEG溶液中加入50、100、250、 500 μmol的硝普钠溶液 | 甜叶菊 (Stevia rebaudiana (Bertoni) Hemsl.) | 加入硝普钠后减轻活性氧的危害,增加植株分枝数和分枝长度,有利于维持细胞内的离子平衡, 稳定渗透功能。50~100 μmol效果最好 | [ | ||||
脯氨酸 | 大田环境 | 植株移栽后的60天和75天各施用1次0、1、2 mmol的脯氨酸, 同时进行干旱胁迫 | 洋葱 (Allium cepa L.) | 外源脯氨酸增加了叶片相对含水量、光合效率和渗透保护剂的含量,1~2 mmol脯氨酸效果最好 | [ | ||||
SA | 温室 | 种子发芽一周后喷洒0.5 mmol的水杨酸溶液,分蘖至开花期进行干旱胁迫 | 小麦 (Triticum aestivum L.) | SA能够缓解膜电解质渗漏和膜脂过氧化, 提高抗氧化酶的活性,维持细胞膜的稳定性 | [ | ||||
SA | 温室 | 第1次于发芽后1周喷施0.5 mmol的SA溶液,第2、3次分别于干旱胁迫前24 h和后24 h喷施0.5 mmol的SA溶液 | 玉米 (Zea mays L.) | 喷施SA后增加了株高、地上部鲜重、叶面积、地上部干物质积累量、多胺含量、可溶性糖和碳水化合物的含量,提高了抗氧化酶的活性 | [ | ||||
茉莉酸甲酯 (MeJA) | 室内控制环境 | 浓度为0.1 μmol的MeJA处理3日龄的幼苗,培养24 h,之后用甘露醇模拟干旱胁迫 | 小麦 (Triticum aestivum L.) | 外源喷施MeJA增强了小麦TADHN基因的表达和脱氢蛋白酶的积累 | [ | ||||
MeJA | 室内控制环境 | 种子在0、2.5、5 mmol MeJA溶液中浸泡24 h,发芽后在光照培养箱中培养14天,之后用PEG模拟干旱胁迫 | 水稻 (Oryza sativa L.) | MeJA提高了叶片的水势,WUE和相对含水量, 降低了电导率,改变植株根茎组织中多重代谢产物的浓度,从而影响水稻种子的萌发和幼苗的生长 | [ | ||||
冠菌素(COR) | 大田环境 | 灌水前1周,喷施0.1 mol的COR溶液 | 小麦 (Triticum aestivum L.) | COR提高了叶片的光合参数和SPAD, COR还可以诱导根发育,增强冬小麦抗旱能力 | [ |
肥料类型 | 试验 环境 | 施用方法 | 作物 | 作用 | 参考文献 |
---|---|---|---|---|---|
纳米硼肥 (80~90 nm) | 大田 环境 | 分蘖期叶面喷施2 g/L纳米硼肥溶液,每隔15天喷施1次 | 小麦 (Triticum aestivum L.) | 提高了籽粒蛋白质含量、SOD和POD 活性、产量和产量构成 | [ |
纳米锌肥 (18 nm) | 温室 | 种子萌发后2周,试验盆内加入 2.17 mg/kg纳米氧化锌肥料 | 小麦 (Triticum aestivum L.) | 小麦抽穗期提前 | [ |
纳米锌肥 (18 nm) | 室内控制环境 | 纳米锌肥和土壤混匀,3个浓度: 1、3、5 mg/kg | 高粱 (Sorghum bicolor L.) | 促进了植株生长,增加了干物质积累量和N、K素积累量,5 mg/kg效果最好 | [ |
纳米锌肥 (20~30 nm) | 室内控制环境 | 发芽2周后,用100 mg/L纳米锌肥溶液叶片喷施,每隔1周喷施1次,总共4次,总用量为2 L | 小麦 (Triticum aestivum L.) | 促进了小麦生长,提高了叶片叶绿素含量、叶片POD和SOD活性 | [ |
纳米铁肥 (10~18nm) | 室内控制环境 | 浓度为5、10、15、20、50、90、120 mg/L处理种子7天 | 谷子 (Setaria italica L.) | 增加了脯氨酸、叶绿素和可溶性糖含量, 并随浓度增加而增加 | [ |
纳米铁肥 (15~34 nm) 纳米凝胶 (51~94 nm) | 室内控制环境 | 肥料和土壤混匀,浓度为0、25、50、 100 mg/kg | 水稻 (Oryza sativa L.) | 增加了生物量、抗氧化酶活性、光合作用效率、叶绿素含量,降低了H2O2含量。 100 mg/kg效果最好 | [ |
纳米铁肥 (50~100 nm) | 室内控制环境 | 把适量浓度的0、25、50、100 mg/kg的纳米铁肥溶液均匀倒入试验盆内 | 小麦 (Triticum aestivum L.) | 增加了光合速率、降低了H2O2和MDA 含量,提高了SOD和POD活性。 100 mg/kg效果最好 | [ |
纳米硅肥 | 室内控制环境 | 在玉米6~8叶期喷施浓度为0、100和200 ppm的溶液 | 玉米 (Zea mays L.) | 100 ppm增加了籽粒中的N含量;200 ppm增加了地上部N、K、Cu、Mg、Si的含量 | [ |
壳聚糖纳米肥料 | 温室 | 干旱处理后第3天,叶面喷施 | 甘蔗 (Saccharum spp. L) | 提高光合速率、增加了根干重和根冠比 | [ |
肥料类型 | 试验 环境 | 施用方法 | 作物 | 作用 | 参考文献 |
---|---|---|---|---|---|
纳米硼肥 (80~90 nm) | 大田 环境 | 分蘖期叶面喷施2 g/L纳米硼肥溶液,每隔15天喷施1次 | 小麦 (Triticum aestivum L.) | 提高了籽粒蛋白质含量、SOD和POD 活性、产量和产量构成 | [ |
纳米锌肥 (18 nm) | 温室 | 种子萌发后2周,试验盆内加入 2.17 mg/kg纳米氧化锌肥料 | 小麦 (Triticum aestivum L.) | 小麦抽穗期提前 | [ |
纳米锌肥 (18 nm) | 室内控制环境 | 纳米锌肥和土壤混匀,3个浓度: 1、3、5 mg/kg | 高粱 (Sorghum bicolor L.) | 促进了植株生长,增加了干物质积累量和N、K素积累量,5 mg/kg效果最好 | [ |
纳米锌肥 (20~30 nm) | 室内控制环境 | 发芽2周后,用100 mg/L纳米锌肥溶液叶片喷施,每隔1周喷施1次,总共4次,总用量为2 L | 小麦 (Triticum aestivum L.) | 促进了小麦生长,提高了叶片叶绿素含量、叶片POD和SOD活性 | [ |
纳米铁肥 (10~18nm) | 室内控制环境 | 浓度为5、10、15、20、50、90、120 mg/L处理种子7天 | 谷子 (Setaria italica L.) | 增加了脯氨酸、叶绿素和可溶性糖含量, 并随浓度增加而增加 | [ |
纳米铁肥 (15~34 nm) 纳米凝胶 (51~94 nm) | 室内控制环境 | 肥料和土壤混匀,浓度为0、25、50、 100 mg/kg | 水稻 (Oryza sativa L.) | 增加了生物量、抗氧化酶活性、光合作用效率、叶绿素含量,降低了H2O2含量。 100 mg/kg效果最好 | [ |
纳米铁肥 (50~100 nm) | 室内控制环境 | 把适量浓度的0、25、50、100 mg/kg的纳米铁肥溶液均匀倒入试验盆内 | 小麦 (Triticum aestivum L.) | 增加了光合速率、降低了H2O2和MDA 含量,提高了SOD和POD活性。 100 mg/kg效果最好 | [ |
纳米硅肥 | 室内控制环境 | 在玉米6~8叶期喷施浓度为0、100和200 ppm的溶液 | 玉米 (Zea mays L.) | 100 ppm增加了籽粒中的N含量;200 ppm增加了地上部N、K、Cu、Mg、Si的含量 | [ |
壳聚糖纳米肥料 | 温室 | 干旱处理后第3天,叶面喷施 | 甘蔗 (Saccharum spp. L) | 提高光合速率、增加了根干重和根冠比 | [ |
[1] |
ARANEDA-CABRERA R J, BERMÚDEZ M, PUERTAS J. Assessment of the performance of drought indices for explaining crop yield variability at the national scale: Methodological framework and application to Mozambique[J]. Agricultural Water Management, 2021, 246:106692.
doi: 10.1016/j.agwat.2020.106692 URL |
[2] | BHAT J A, DESHMUKH R, ZHAO T, et al. Harnessing high-throughput phenotyping and genotyping for enhanced drought tolerance in crop plants[J]. Biotechnology Journal, 2020, 324:248-260. |
[3] |
CHANDRA P, WUNNAVA A, VERMA P, et al. Strategies to mitigate the adverse effect of drought stress on crop plants—influences of soil bacteria:A review[J]. Pedosphere, 2021, 31:496-509.
doi: 10.1016/S1002-0160(20)60092-3 URL |
[4] |
JOHN B. Intergovernmental Panel on Climate Change Special Report on Global Warming of 1.5°C Switzerland: IPCC, 2018[J]. Population and Development Review, 2019, 45(1):251-252.
doi: 10.1111/padr.12234 URL |
[5] |
LABONTÉ-RAYMOND P L, PABST T, BUSSIÈRE B, et al. Impact of climate change on extreme rainfall events and surface water management at mine waste storage facilities[J]. Journal of Hydrology, 2020, 590:125383.
doi: 10.1016/j.jhydrol.2020.125383 URL |
[6] |
CHAVOUSHI M, NAJAFI F, SALIMI A, et al. Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside[J]. Industrial Crops and Products, 2019, 134:168-176.
doi: 10.1016/j.indcrop.2019.03.071 URL |
[7] |
MITTLER R, BLUMWALD E. Genetic engineering for modern agriculture: challenges and perspectives[J]. Annual Review Plant Biology, 2010, 61:443-462.
doi: 10.1146/annurev-arplant-042809-112116 URL |
[8] |
FANG Q, ZHANG X, CHEN S, et al. Selecting traits to increase winter wheat yield under climate change in the North China Plain[J]. Field Crops Research, 2017, 207:30-41.
doi: 10.1016/j.fcr.2017.03.005 URL |
[9] |
CHEN S, GONG B. Response and adaptation of agriculture to climate change:Evidence from China[J]. Journal of Development Economics, 2021, 148:102557.
doi: 10.1016/j.jdeveco.2020.102557 URL |
[10] | LU J, CARBONE G J, HUANG X, et al. Mapping the sensitivity of agriculture to drought and estimating the effect of irrigation in the United States, 1950-2016[J]. Agricultural and Forest Meteorology, 2020,292-293:108124. |
[11] |
XIAO D, LIU D L, FENG P, et al. Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain[J]. Agricultural Water Management, 2021, 246:106685.
doi: 10.1016/j.agwat.2020.106685 URL |
[12] |
THAPA S, REDDY S K, FUENTEALBA M P, et al. Physiological responses to water stress and yield of winter wheat cultivars differing in drought tolerance[J]. Journal of Agronomy and Crop Science, 2018, 204(4):347-358.
doi: 10.1111/jac.12263 URL |
[13] |
SANAD M N M E, AL-HUQAIL A A, IBRAHIM M M, et al. Prediction of the crosstalk regulation model between the abscisic acid (ABA) signaling and peroxisome abundance during drought stress in wheat (Triticum aestivum L.)[J]. Current Plant Biology, 2020, 24:100176.
doi: 10.1016/j.cpb.2020.100176 URL |
[14] |
CHEN X, MIN D, YASIR T A, et al. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD)[J]. Field Crops Research, 2012, 137:195-201.
doi: 10.1016/j.fcr.2012.09.008 URL |
[15] |
AHMED K, SHABBIR G, AHMED M, et al. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits[J]. Science of the Total Environment, 2020, 729:139082.
doi: 10.1016/j.scitotenv.2020.139082 URL |
[16] |
ZHANG Y P, ZHANG Y H, WANG Z M, et al. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions[J]. Field Crops Research, 2011, 123:187-195
doi: 10.1016/j.fcr.2011.04.014 URL |
[17] |
ZHAO J, XUE Q W, JESSUP K E, et al. Shoot and root traits in drought tolerant maize (Zea mays L.) hybrids[J]. Journal of Integrative Agriculture, 2018, 17:1093-1105.
doi: 10.1016/S2095-3119(17)61869-0 URL |
[18] |
HU L, XIE Y, FAN S, et al. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress[J]. Plant Science, 2018, 272:276-293.
doi: S0168-9452(17)30854-3 pmid: 29807601 |
[19] | 张馨月, 王寅, 陈健, 等. 水分和氮素对玉米苗期生长、根系形态及分布的影响[J]. 中国农业科学, 2019, 52(1):34-44. |
[20] |
AHMED H G M D, KHAN A S, LI M J, et al. Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance[J]. Journal of Integrative Agriculture, 2019, 18:2483-2491.
doi: 10.1016/S2095-3119(18)62083-0 URL |
[21] |
赵佳佳, 乔玲, 武棒棒, 等. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4):714-727.
doi: 10.3724/SP.J.1006.2021.01048 |
[22] |
AHANGIR A, GHOTBI-RAVANDI A A, REZADOOST H, et al. Drought tolerant maize cultivar accumulates putrescine in roots[J]. Rhizosphere, 2020, 16:100260.
doi: 10.1016/j.rhisph.2020.100260 URL |
[23] |
OSAKABE Y, OSAKABE K, SHINOZAKI K, et al. Response of plants to water stress[J]. Frontiers in Plant Science, 2014, 5:86.
doi: 10.3389/fpls.2014.00086 pmid: 24659993 |
[24] | ZIA R, NAWAZ M S, SIDDIQUE M J, et al. Plant survival under drought stress:Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation[J]. Microbiolgical Research, 2021, 242:126626. |
[25] |
MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signaling during drought and salinity stresses[J]. Plant Cell and Environment, 2010, 33:453-467.
doi: 10.1111/j.1365-3040.2009.02041.x URL |
[26] |
KUMAR S, AYACHIT G, SAHOO L. Screening of mungbean for drought tolerance and transcriptome profiling between drought-tolerant and susceptible genotype in response to drought stress[J]. Plant Physiology and Biochemistry, 2020, 157:229-238.
doi: 10.1016/j.plaphy.2020.10.021 pmid: 33129069 |
[27] |
HOSSEINI F, MOSADDEGHI M R, DEXTER A R. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses[J]. Plant Physiology and Biochemistry, 2017, 118:107-120.
doi: S0981-9428(17)30195-X pmid: 28624682 |
[28] |
NEMATI M, PIRO A, NOROUZI M, et al. Comparative physiological and leaf proteomic analyses revealed the tolerant and sensitive traits to drought stress in two wheat parental lines and their F6 progenies[J]. Environmental and Experimental Botany, 2019, 158:223-237.
doi: 10.1016/j.envexpbot.2018.10.024 URL |
[29] | 王鹏, 王铁兵, 王瑞, 等. 外源5-氨基乙酰丙酸对干旱胁迫下玉米幼苗生理特性及抗氧化酶基因表达的影响[J]. 干旱地区农业研究, 2021, 39(1):75-81. |
[30] |
MU Q, CAI H, SUN S, et al. The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes[J]. Agricultural Water Management, 2021, 243:106475.
doi: 10.1016/j.agwat.2020.106475 URL |
[31] |
BLUM A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant Cell and Environment, 2017, 40:4-10.
doi: 10.1111/pce.12800 URL |
[32] |
AHMED M, HASSAN F U, QADIR G, et al. Response of proline accumulation in bread wheat (Triticum aestivum L.) under rainfed conditions[J]. Journal of Agricultural Meteorology, 2017, 73(4):147-155.
doi: 10.2480/agrmet.D-14-00047 URL |
[33] |
BAI X, DAI L, SUN H, et al. Effects of moderate soil salinity on osmotic adjustment and energy strategy in soybean under drought stress[J]. Plant Physiology and Biochemistry, 2019, 139:307-313.
doi: S0981-9428(19)30119-6 pmid: 30927693 |
[34] |
GUPTA S, MISHRA S K, MISRA S, et al. Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach[J]. Plant Physiology and Biochemistry, 2020, 151:88-102.
doi: S0981-9428(20)30110-8 pmid: 32203884 |
[35] |
ANUPAMA A, BHUGRA S, LALL B, et al. Morphological, transcriptomic and proteomic responses of contrasting rice genotypes towards drought stress[J]. Environmental and Experimental Botany, 2019, 166:103795.
doi: 10.1016/j.envexpbot.2019.06.008 URL |
[36] |
WANG X, MAO Z, ZHANG J, et al. Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.)[J]. Environmental and Experimental Botany, 2019, 166:103804.
doi: 10.1016/j.envexpbot.2019.103804 URL |
[37] |
FILIPPOU P, BOUCHAGIER P, SKOTTI E, et al. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity[J]. Environmental and Experimental Botany, 2014, 97:1-10
doi: 10.1016/j.envexpbot.2013.09.010 URL |
[38] | 叶玉秀, 陆大雷, 王飞兵, 等. 干旱胁迫下外源海藻糖对糯玉米幼苗生理特性的影响[J]. 玉米科学, 2020, 28(3):80-86. |
[39] | SEQUERA-MUTIOZABAL M, TIBURCIO A F, ALC´AZAR R. Drought stress tolerance in relation to polyamine metabolism in plants. Drought Stress Tolerance in Plants, 2016, 1:267-286. |
[40] |
SZALAI G, JANDA K, DARKO E, et al. Comparative analysis of polyamine metabolism in wheat and maize plants[J]. Plant Physiology and Biochemistry, 2017, 112:239-250.
doi: S0981-9428(17)30020-7 pmid: 28107732 |
[41] |
ALCÁZAR R, PLANAS J, SAXENA T, et al. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene[J]. Plant Physiology and Biochemistry, 2010, 48:547-552.
doi: 10.1016/j.plaphy.2010.02.002 pmid: 20206537 |
[42] |
PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants:a review[J]. Ecotoxicology and Environment Safety, 2005, 60:324-349
doi: 10.1016/j.ecoenv.2004.06.010 URL |
[43] |
ZENG Y L, LI L, YANG R R, et al. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress[J]. Scientific reports, 2015, 5:13639.
doi: 10.1038/srep13639 pmid: 26350977 |
[44] |
ZHANG Y P, LI Y P, HASSAN M J, et al. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes[J]. BMC Plant Biology, 2020, 20:150.
doi: 10.1186/s12870-020-02354-y pmid: 32268884 |
[45] |
TANKARI M, WANG C, MA H, et al. Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress[J]. Agricultural Water Management, 2021, 245:106565.
doi: 10.1016/j.agwat.2020.106565 URL |
[46] |
CANALES F J, RISPAIL N, GARCÍA-TEJERA O, et al. Drought resistance in oat involves ABA-mediated modulation of transpiration and root hydraulic conductivity[J]. Environmental and Experimental Botany, 2021, 182:104333.
doi: 10.1016/j.envexpbot.2020.104333 URL |
[47] |
AGARWAL P, SINGH P C, CHAUDHRY V, et al. PGPR-induced OsASR6 improves plant growth and yield by altering root auxin sensitivity and the xylem structure in transgenic Arabidopsis thaliana[J]. Journal of Plant Physiology, 2019, 240:153010.
doi: 10.1016/j.jplph.2019.153010 URL |
[48] |
GELOVA Z, GALLEI M, PERNISOVA M, et al. Developmental roles of Auxin Binding Protein 1 in Arabidopsis thaliana[J]. Plant Science, 2021, 303:110750.
doi: 10.1016/j.plantsci.2020.110750 URL |
[49] |
CHHAYA, YADAV, B, JOGAWAT, A, et al. An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants[J]. Plant Gene, 2021, 25:100264.
doi: 10.1016/j.plgene.2020.100264 URL |
[50] |
XU Y, BURGESS P, ZHANG X, et al. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera[J]. Journal of Experimental Botany, 2016, 67:1979-1992.
doi: 10.1093/jxb/erw019 pmid: 26889010 |
[51] |
LIMA A A, SANTOS I S, TORRES M E L, et al. Drought and re-watering modify ethylene production and sensitivity, and are associated with coffee anthesis[J]. Environmental and Experimental Botany, 2021, 181:104289.
doi: 10.1016/j.envexpbot.2020.104289 URL |
[52] | SHEN S, LI B B, DENG T, et al. The equilibrium between sugars and ethylene is involved in shading- and drought-induced kernel abortion in maize[J]. Journal of Plant Growth Regulation, 2020, 91:101-111. |
[53] |
LUO W, GONG Y, TANG Y, et al. Glutathione and ethylene biosynthesis reveal that the glume and lemma have better tolerance to water deficit in wheat[J]. Plant Physiology and Biochemistry, 2021, 160:120-129.
doi: 10.1016/j.plaphy.2021.01.008 pmid: 33485150 |
[54] |
PANDEY A, DEVI L L, SINGH A P. Review:Emerging roles of brassinosteroid in nutrient foraging[J]. Plant Science, 2020, 296:110474.
doi: 10.1016/j.plantsci.2020.110474 URL |
[55] |
SAHNI S, PRASAD B D, LIU Q, et al. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance[J]. Scientific reports, 2016,2016, 6(1):28298.
doi: 10.1038/srep28298 URL |
[56] |
DE DOMENICO S, BONSEGNA S, HORRES R, et al. Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress[J]. Plant Physiology and Biochemistry, 2012, 61:115-122.
doi: 10.1016/j.plaphy.2012.09.009 pmid: 23141673 |
[57] |
LA V H, LEE B R, ISLAM M T, et al. Characterization of salicylic acid-mediated modulation of the drought stress responses:Reactive oxygen species, proline, and redox state in Brassica napus[J]. Environmental and Experimental Botany, 2019, 157:1-10.
doi: 10.1016/j.envexpbot.2018.09.013 URL |
[58] |
DALAL M, SAHU S, TIWARI S, et al. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat[J]. Plant Physiology and Biochemistry, 2018, 130:482-492.
doi: S0981-9428(18)30335-8 pmid: 30081325 |
[59] |
HU X, WANG G, DU X, et al. QTL analysis across multiple environments reveals promising chromosome regions associated with yield-related traits in maize under drought conditions[J]. The Crop Journal, 2020, 9(4):759-766.
doi: 10.1016/j.cj.2020.10.004 URL |
[60] |
ZHANG X Y, WANG S F, SUN H Y, et al. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: a case study in the North China Plain[J]. European Journal of Agronomy, 2013, 50:52-59.
doi: 10.1016/j.eja.2013.05.005 URL |
[61] |
HUANG M, XU Y H, WANG H. Q. Field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (Oryza sativa L.)[J]. Journal of Integrative Agriculture, 2019, 18:970-981.
doi: 10.1016/S2095-3119(18)61909-4 |
[62] | FANG Q, ZHANG X Y, CHEN S Y, et al. Selecting traits to reduce seasonal yield variation of summer maize in the North China Plain[J]. Agronomy Journal, 2019,111,343-353. |
[63] | SUN Q, LIANG X L, ZHANG D G, et al. Trends in drought tolerance in Chinese maize cultivars from the 1950s to the 2000s[J]. Field Crops Research, 2017, 201:173-183 |
[64] |
PANDIT E, PANDA, R K, SAHOO A, et al. Genetic relationship and structure analysis of root growth angle for improvement of drought avoidance in early and mid-early maturing rice genotypes[J]. Rice Science, 2020, 27:124-132.
doi: 10.1016/j.rsci.2020.01.003 |
[65] |
SINGH V, VAN OOSTEROM E J, JORDAN D R, et al. Morphological and architectural development of root systems in sorghum and maize[J]. Plant and Soil, 2010, 333:287-299.
doi: 10.1007/s11104-010-0343-0 URL |
[66] |
FANG Q, WANG Y, UWIMPAYE F, et al. Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize[J]. Agricultural Water Management, 2021, 245:106628.
doi: 10.1016/j.agwat.2020.106628 URL |
[67] |
WASSON, A P., RICHARDS, R A., CHATRATH, R, et al. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops[J]. Journal of Experimental Botany, 2012, 63:3485-3498.
doi: 10.1093/jxb/ers111 pmid: 22553286 |
[68] |
PURUSHOTHAMAN R, KRISHNAMURTHY L, UPADHYAYA H D, et al. Genotypic variation in soil water use and root distribution and their implications for drought tolerance in chickpea[J]. Functional plant biology, 2017, 44:235-252
doi: 10.1071/FP16154 pmid: 32480560 |
[69] | ZHANG X Y, QIN W L, XIE J N. Improving water use efficiency in grain production of winter wheat and summer maize in the North China Plain: a review[J]. Frontiers of Environmental Science and Engineering, 2016, 3(1):25-33 |
[70] | PASSIOURA J B, ANGUS J F. Improving productivity of crops in water-limited environments[J]. Advanced in Agronomy, 2010, 106:37-75. |
[71] |
UGA Y, SUGIMOTO K, OGAWA S, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature genetics, 2013, 45:1097-1102.
doi: 10.1038/ng.2725 pmid: 23913002 |
[72] |
TAMARA F J, MOONEY, S J, SPARKES D L. Sugar beet root growth under different watering regimes:A minirhizotron study[J]. Environmental and Experimental Botany, 2018, 155:79-86
doi: 10.1016/j.envexpbot.2018.06.023 URL |
[73] | XIE C, CAI S, YU B, et al. The effects of tree root density on water infiltration in urban soil based on a ground penetrating radar in Shanghai, China[J]. Urban Forestry & Urban Greening, 2020, 50:126648. |
[74] |
BAGNALL G C, KOONJOO N, ALTOBELLI S A, et al. Low-field magnetic resonance imaging of roots in intact clayey and silty soils[J]. Geoderma, 2020, 370:114356.
doi: 10.1016/j.geoderma.2020.114356 URL |
[75] |
MAENHOUT P, SLEUTEL S, XU H, et al. Semi-automated segmentation and visualization of complex undisturbed root systems with X-ray μCT[J]. Soil and Tillage Research, 2019, 192:59-65.
doi: 10.1016/j.still.2019.04.025 URL |
[76] |
WASAYA A, ZHANG X, FANG Q, et al. Root phenotyping for drought tolerance:A review[J]. Agronomy, 2018, 8:241.
doi: 10.3390/agronomy8110241 URL |
[77] |
DONG Q G, Yang Y, Yu K, et al. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China[J]. Agricultural Water Management, 2018, 201:133-143.
doi: 10.1016/j.agwat.2018.01.021 URL |
[78] |
AKHTAR K, WANG W, REN G, et al. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China[J]. Soil and Tillage Research, 2018, 182:94-102.
doi: 10.1016/j.still.2018.05.007 URL |
[79] |
ZHANG X Y, CHEN S Y, LIU M Y, et al. Improved water use efficiency associated with cultivars and agronomic management in the North China Plain[J]. Agronomy Journal, 2005, 97:783-790.
doi: 10.2134/agronj2004.0194 URL |
[80] |
DASS A, BHATTACHARYYA R. Wheat residue mulch and anti-transpirants improve productivity and quality of rainfed soybean in semi-arid north-Indian plains[J]. Field Crops Research, 2017, 210:9-19.
doi: 10.1016/j.fcr.2017.05.011 URL |
[81] |
AKHTAR K, WANG W, KHAN A, et al. Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean[J]. Agricultural Water Management, 2019, 211:16-25.
doi: 10.1016/j.agwat.2018.09.031 URL |
[82] |
RASHID M A, ZHANG X, ANDERSEN M N, et al. Can mulching of maize straw complement deficit irrigation to improve water use efficiency and productivity of winter wheat in North China Plain?[J]. Agricultural Water Management, 2019, 213:1-11.
doi: 10.1016/j.agwat.2018.10.008 URL |
[83] |
CHEN H, LIU J, ZHANG A, et al. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China:A field study of 2 consecutive wheat-maize rotation cycles[J]. Science of the Total Environment, 2017, 579:814-824.
doi: 10.1016/j.scitotenv.2016.11.022 URL |
[84] | 梅四卫, 朱涵珍, 王术, 等. 不同覆盖方式对土壤水肥热状况以及玉米产量影响[J]. 灌溉排水学报, 2020, 39(4):68-73. |
[85] |
THIDAR M, GONG D, MEI X, et al. Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China[J]. Agricultural Water Management, 2020, 241:106340.
doi: 10.1016/j.agwat.2020.106340 URL |
[86] |
FU W, FAN J, HAO M, et al. Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China[J]. Agricultural Water Management, 2021, 244:106550.
doi: 10.1016/j.agwat.2020.106550 URL |
[87] |
GAO H, YAN C, LIU Q, et al. Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis[J]. Agricultural Water Management, 2019, 225:105741.
doi: 10.1016/j.agwat.2019.105741 URL |
[88] |
王红丽, 张绪成, 于显枫, 等. 半干旱区周年全膜覆盖对玉米田土壤冻融特性和水热分布的影响[J]. 应用生态学报, 2020, 31(4):1146-1154.
doi: 10.13287/j.1001-9332.202004.027 |
[89] |
HU Y, MA P, DUAN C, et al. Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China[J]. Agricultural Water Management, 2020, 231:106031.
doi: 10.1016/j.agwat.2020.106031 URL |
[90] |
邢晋, 张思平, 赵新华, 等. 不同颜色地膜覆盖对棉花冠层构型及光合特性的调控效应[J]. 核农学报, 2020, 34(12):2850-2857.
doi: 10.11869/j.issn.100-8551.2020.12.2850 |
[91] |
DARYANTO S, WANG L, JACINTHE P A. Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems[J]. Agricultural Water Management, 2017, 190:1-5.
doi: 10.1016/j.agwat.2017.05.005 URL |
[92] |
ADHIKARI R, BRISTOW KL, CASEY PS, et al. Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency[J]. Agricultural Water Management, 2016, 169:1-13
doi: 10.1016/j.agwat.2016.02.006 URL |
[93] | 邓方宁, 林涛, 何文清, 等. 生物降解地膜覆盖对棉田土壤水-热-盐及产量的影响[J]. 生态学杂志, 2020, 39(6):1956-1965. |
[94] | 邓浩亮, 张恒嘉, 肖让, 等. 陇中半干旱区不同覆盖种植方式对土壤水热效应和玉米产量的影响[J]. 中国农业科学, 2020, 53(2):273-287. |
[95] |
ZHENG J, FAN J, ZHANG F, et al. Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China[J]. Agricultural Water Management, 2021, 243:106473.
doi: 10.1016/j.agwat.2020.106473 URL |
[96] | 漆永红, 岳德成, 姜延军, 等. 杂草对全膜双垄沟播田集水保墒效果影响[J]. 灌溉排水学报, 2015, 34(4):91-94,99. |
[97] |
侯慧芝, 张绪成, 方彦杰, 等. 全膜微垄沟播对寒旱区春小麦苗期土壤水热环境及光合作用的影响[J]. 作物学报, 2020, 46(9):1398-1407.
doi: 10.3724/SP.J.1006.2020.01012 |
[98] |
ZHAO Y, ZHAI X, WANG Z, et al. Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau[J]. Agricultural Water Management, 2018, 202:99-112.
doi: 10.1016/j.agwat.2018.02.017 URL |
[99] |
LI J, WANG Z, YAO C, et al. Micro-sprinkling irrigation simultaneously improves grain yield and protein concentration of winter wheat in the North China Plain[J]. The Crop Journal, 2021, 9(6):1397-1407.
doi: 10.1016/j.cj.2020.12.009 URL |
[100] |
LI J, XU X, LIN G, et al. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain[J]. Science of the Total Environment, 2018, 643:367-377.
doi: 10.1016/j.scitotenv.2018.06.157 URL |
[101] |
YANG D, LI S, KANG S, et al. Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China[J]. Agricultural Water Management, 2020, 232:106001.
doi: 10.1016/j.agwat.2020.106001 URL |
[102] |
LIU Z, JIAO X, ZHU C, et al. Micro-climatic and crop responses to micro-sprinkler irrigation[J]. Agricultural Water Management, 2021, 243:106498.
doi: 10.1016/j.agwat.2020.106498 URL |
[103] |
Li J P, Zhang Z, Yao C S, et al. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate[J]. Journal of Integrative Agriculture, 2021, 20:606-621.
doi: 10.1016/S2095-3119(20)63407-4 URL |
[104] | 王文娟, 王文娥, 胡笑涛. 小麦植株遮挡对微喷灌均匀度的影响[J]. 中国农业大学学报, 2021, 26(2):16-23. |
[105] |
FANG Q, ZHANG X Y, SHAO L W, et al. Assessing the performance of different irrigation systems on winter wheat under limited water supply[J]. Agriculture Water Management, 2018, 196:133-143.
doi: 10.1016/j.agwat.2017.11.005 URL |
[106] | 傅丰贝, 陆文娟, 李伏生. 不同控水时段根区局部灌溉对玉米生理和水分利用效率的影响[J]. 植物营养与肥料学报, 2014, 20(6):1378-1386. |
[107] |
MEHRABI F, SEPASKHAH A R. Partial root zone drying irrigation, planting methods and nitrogen fertilization influence on physiologic and agronomic parameters of winter wheat[J]. Agricultural Water Management, 2019, 223:105688.
doi: 10.1016/j.agwat.2019.105688 URL |
[108] | 段爱旺, 肖俊夫, 张寄阳, 等. 控制交替沟灌中灌水控制下限对玉米叶片水分利用效率的影响[J]. 作物学报, 1999(6):766-771. |
[109] |
SARKER K K, HOSSAIN A, TIMSINA J, et al. Alternate furrow irrigation can maintain grain yield and nutrient content, and increase crop water productivity in dry season maize in sub-tropical climate of South Asia[J]. Agricultural Water Management, 2020, 238:106229.
doi: 10.1016/j.agwat.2020.106229 URL |
[110] | 郑健, 潘占鹏, 颜斐, 等. 基于Meta评价控制性分根交替灌溉的作物水分利用效率[J]. 江苏大学学报(自然科学版), 2019, 40(3):332-337. |
[111] |
MPHANDE W, FARRELL A D, GROVE I G, et al. Yield improvement by antitranspirant application in droughted wheat is associated with reduced endogenous abscisic acid concentration[J]. Agricultural Water Management, 2021, 244:106528.
doi: 10.1016/j.agwat.2020.106528 URL |
[112] |
ABDALLAH A M, BURKEY K O, MASHAHEET A M. Reduction of plant water consumption through anti-transpirants foliar application in tomato plants (Solanum lycopersicum L)[J]. Scientia Horticulturae, 2018, 235:373-381.
doi: 10.1016/j.scienta.2018.03.005 URL |
[113] |
ZHANG X, ZHANG X, LIU X, et al. Improving winter wheat performance by foliar Spray of ABA and FA under water deficitconditions[J]. Journal of Plant Growth Regulation, 2016, 35:83-96.
doi: 10.1007/s00344-015-9509-6 URL |
[114] |
SOOTAHAR M K, ZENG X, SU S, et al. Molecules the effect of fulvic acids derived from different materials on changing properties of albic black soil in the Northeast Plain of China[J]. Molecules, 2019, 24:1-12.
doi: 10.3390/molecules24010001 URL |
[115] |
ABDULLAH A S, AZIZ M M, SIDDIQUE K H M, et al. Film antitranspirants increase yield in drought stressed wheat plants by maintaining high grain number[J]. Agricultural Water Management, 2015, 159:11-18.
doi: 10.1016/j.agwat.2015.05.018 URL |
[116] |
XIANG J, HARE M, VICKERS L, et al. Estimation of film antitranspirant spray coverage on rapeseed (Brassica napus L.) leaves using titanium dioxide[J]. Crop Protection, 2021, 142:105531.
doi: 10.1016/j.cropro.2021.105531 URL |
[117] | 师长海, 孔少华, 翟红梅, 等. 喷施抗蒸腾剂对冬小麦旗叶蒸腾效率的影响[J]. 中国生态农业学报, 2011, 19(5):1091-1095. |
[118] |
DASH P K, CHASE C A, AGEHARA S, et al. Heat stress mitigation effects of kaolin and s-abscisic acid during the establishment of strawberry plug transplants[J]. Scientia Horticulturae, 2020, 267:109276.
doi: 10.1016/j.scienta.2020.109276 URL |
[119] |
DA SILVA, P S O, DE OLIVEIRA L F G, DE MATTOS E C, et al. Calcium particle films promote artificial shading and photoprotection in leaves of American grapevines (Vitis labrusca L.)[J]. Scientia Horticulturae, 2019, 252:77-84.
doi: 10.1016/j.scienta.2019.03.041 URL |
[120] |
GHARAGHANI A, MOHAMMADI JAVARZARI A, VAHDATI K. Kaolin particle film alleviates adverse effects of light and heat stresses and improves nut and kernel quality in Persian walnut[J]. Scientia Horticulturae, 2018, 239:35-40.
doi: 10.1016/j.scienta.2018.05.024 URL |
[121] |
MPHANDE W, KETTLEWELL P S, GROVE I G, et al. The potential of antitranspirants in drought management of arable crops: A review[J]. Agricultural Water Management, 2020, 236:106143.
doi: 10.1016/j.agwat.2020.106143 URL |
[122] |
POURGHASEMIAN N, MORADI R, NAGHIZADEH M, et al. Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract[J]. Agricultural Water Management, 2020, 231:105997.
doi: 10.1016/j.agwat.2019.105997 URL |
[123] |
QIAN J, ZHANG X, YAN Y, et al. Unravelling the molecular mechanisms of abscisic acid-mediated drought-stress alleviation in pomegranate (Punica granatum L.)[J]. Plant Physiology and Biochemistry, 2020, 157:211-218.
doi: 10.1016/j.plaphy.2020.10.020 URL |
[124] |
LUO Y, LI W, HUANG C, et al. Exogenous abscisic acid coordinating leaf senescence and transport of assimilates into wheat grains under drought stress by regulating hormones homeostasis[J]. The Crop Journal, 2020, 9(4):901-904.
doi: 10.1016/j.cj.2020.08.012 URL |
[125] |
YANG L L, YANG L, LAN Y M, et al. Exogenous abscisic acid reduces saikosaponin accumulation by inhibiting saikosaponin synthesis pathway gene expression under drought stress in Bupleurum chinense DC[J]. Industrial Crops and Products, 2020, 154:112686.
doi: 10.1016/j.indcrop.2020.112686 URL |
[126] |
ŠÍPOŠOVÁ K, KOLLAROVA K, LISKOVA D, et al. The effects of IBA on the composition of maize root cell walls[J]. Journal of Plant Physiology,(2019, 239:10-17.
doi: S0176-1617(19)30050-1 pmid: 31177026 |
[127] |
SEMIDA W M, ABDELKHALIK A, RADY M O A, et al. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants[J]. Scientia Horticulturae, 2020, 272:109580.
doi: 10.1016/j.scienta.2020.109580 URL |
[128] |
HAGHIGHI M, SAADAT S, ABBEY L. Effect of exogenous amino acids application on growth and nutritional value of cabbage under drought stress[J]. Scientia Horticulturae, 2020, 272:109561.
doi: 10.1016/j.scienta.2020.109561 URL |
[129] |
GAO T, ZHANG Z, LIU X, et al. Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple[J]. Plant Physiology and Biochemistry, 2020, 148:260-272.
doi: S0981-9428(20)30022-X pmid: 31982861 |
[130] |
YAMAGUCHI K, TAKAHASHI Y, BERBERICH T, et al. A protective role for the polyamine spermine against drought stress in Arabidopsis[J]. Biochemical and Biophysical Research Communication, 2007, 352:486-90.
doi: 10.1016/j.bbrc.2006.11.041 URL |
[131] |
ZHOU Y, LIU Y, PENG C, et al. Coronatine enhances drought tolerance in winter wheat by maintaining high photosynthetic performance[J]. Journal of Plant Physiology, 2018, 228:59-65.
doi: S0176-1617(18)30226-8 pmid: 29870879 |
[132] |
HU W, CAO Y, LOKA D A, et al. Exogenous melatonin improves cotton (Gossypium hirsutum L.) pollen fertility under drought by regulating carbohydrate metabolism in male tissues[J]. Plant Physiology and Biochemistry, 2020, 151:579-588.
doi: 10.1016/j.plaphy.2020.04.001 URL |
[133] |
DAI L, LI J, HARMENS H, et al. Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes[J]. Plant Physiology and Biochemistry, 2020, 149:86-95.
doi: 10.1016/j.plaphy.2020.01.039 URL |
[134] |
DEHGHAN M, BALOUCHI H, YADAVI A, et al. Improve wheat (Triticum aestivum) performance by brassinolide application under different irrigation regimes[J]. South African Journal of Botany, 2020, 130:259-267.
doi: 10.1016/j.sajb.2020.01.013 URL |
[135] |
SHAKIROVA F, ALLAGULOVA C, MASLENNIKOVA D, et al. Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress[J]. Plant Physiology and Biochemistry, 2016, 108:539-548.
doi: S0981-9428(16)30280-7 pmid: 27611241 |
[136] |
LI L, GU W, LI J, et al. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones[J]. Plant Physiology and Biochemistry, 2018, 129:35-55.
doi: 10.1016/j.plaphy.2018.05.017 URL |
[137] |
PÁL M, MAJLATH I, NEMETH E, et al. The effects of putrescine are partly overlapping with osmotic stress processes in wheat[J]. Plant Science, 2018, 268:67-76.
doi: S0168-9452(17)30849-X pmid: 29362086 |
[138] |
PRADHAN N, SINGH P, DWIVEDI P, et al. Evaluation of sodium nitroprusside and putrescine on polyethylene glycol induced drought stress in Stevia rebaudiana Bertoni under in vitro condition[J]. Industrial Crops and Products, 2020, 154:112754.
doi: 10.1016/j.indcrop.2020.112754 URL |
[139] |
KHALVANDI M, SIOSEMARDEH A, ROOHI E, et al. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat[J]. Heliyon, 2021, 7:e05908.
doi: 10.1016/j.heliyon.2021.e05908 URL |
[140] |
NAZ R, SARFRAZ A, ANWAR Z, et al. Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (Zea mays L.)[J]. Plant Physiology and Biochemistry, 2021, 159:285-300.
doi: 10.1016/j.plaphy.2020.12.022 URL |
[141] |
ALLAGULOVA C, AVALBAEV A, FEDOROVA K, et al. Methyl jasmonate alleviates water stress-induced damages by promoting dehydrins accumulation in wheat plants[J]. Plant Physiology and Biochemistry, 2020, 155:676-682.
doi: S0981-9428(20)30346-6 pmid: 32861034 |
[142] |
SHETEIWY M S, GONG D, GAO Y, et al. Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile[J]. Environmental and Experimental Botany, 2018, 153:236-248.
doi: 10.1016/j.envexpbot.2018.06.001 URL |
[143] | 张夫道, 赵秉强, 张骏, 等. 纳米肥料研究进展与前景[J]. 植物营养与肥料学报, 2002(2):254-255. |
[144] |
SINGH R P, HANDA R, MANCHANDA G. Nanoparticles in sustainable agriculture:An emerging opportunity[J]. Journal of Controlled Release, 2021, 329:1234-1248.
doi: 10.1016/j.jconrel.2020.10.051 URL |
[145] |
YUSEFI-TANHA E, FALLAH S, ROSTAMNEJADI A, et al. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer:Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar)[J]. Science of the Total Environment, 2020, 738:140240.
doi: 10.1016/j.scitotenv.2020.140240 URL |
[146] |
YUSEFI-TANHA E, FALLAH S, ROSTAMNEJADI A, et al. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer:Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar)[J]. Science of the Total Environment, 2020, 738:140240.
doi: 10.1016/j.scitotenv.2020.140240 URL |
[147] |
MATHUR P, ROY S. Nanosilica facilitates silica uptake, growth and stress tolerance in plants[J]. Plant Physiology and Biochemistry, 2020, 157:114-127.
doi: 10.1016/j.plaphy.2020.10.011 pmid: 33099119 |
[148] |
MORADBEYGI H, JAMEI R, HEIDARI R, et al. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress[J]. Scientia Horticulturae, 2020, 272:109537.
doi: 10.1016/j.scienta.2020.109537 URL |
[149] |
AHMADIAN K, JALILIAN J, PIRZAD A. Nano-fertilizers improved drought tolerance in wheat under deficit irrigation[J]. Agricultural Water Management, 2021, 244:106544.
doi: 10.1016/j.agwat.2020.106544 URL |
[150] |
DIMKPA C O, SINGH U, BINDRABAN P S, et al. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification[J]. Science of the Total Environment, 2019, 688:926-934.
doi: 10.1016/j.scitotenv.2019.06.392 URL |
[151] |
ADREES M, KHAN Z, HAFEEZ M., et al. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress[J]. Ecotoxicology and Environmental Safety, 2021, 208:111627.
doi: 10.1016/j.ecoenv.2020.111627 URL |
[152] |
SREELAKSHMI B, INDUJA S, ADARSH P P, et al. Drought stress amelioration in plants using green synthesised iron oxide nanoparticles[J]. Materials Today: Proceedings, 2021, 41:723-727.
doi: 10.1016/j.matpr.2020.05.801 URL |
[153] |
AHMED T, NOMAN M, MANZOOR N, et al. Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition[J]. Ecotoxicology and Environmental Safety, 2021, 209:111829.
doi: 10.1016/j.ecoenv.2020.111829 URL |
[154] |
ADREES M, KHAN Z S, AIL S, et al. Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles[J]. Chemosphere, 2020, 238:124681.
doi: 10.1016/j.chemosphere.2019.124681 URL |
[155] | AQAEI P, WEISANY W, DIYANAT M, et al. Response of maize (Zea mays L.) to potassium nano-silica application under drought stress[J]. Journal of Plant Nutrition, 2020,(3):1-12. |
[156] |
SILVEIRA N M, SEABRA A B, MARCOS FCC, et al. Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants[J]. Nitric Oxide, 2019, 84:38-44.
doi: S1089-8603(18)30235-0 pmid: 30639449 |
[157] |
ALI S, RIZWAN M, QAYYUM M F, et al. Biochar soil amendment on alleviation of drought and salt stress in plants:a critical review[J]. Environmental science and pollution research international, 2017, 24:12700-12712.
doi: 10.1007/s11356-017-8904-x URL |
[158] |
ABBAS T, RIZWAN M, ALI S, et al. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil[J]. Ecotoxicology and Environmental Safety, 2018, 148:825-833.
doi: S0147-6513(17)30816-3 pmid: 29197797 |
[159] |
RAMZANI P M A, SHAN L, ANJUM S, et al. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost[J]. Plant Physiology and Biochemistry, 2017, 116:127-138.
doi: S0981-9428(17)30151-1 pmid: 28554146 |
[160] |
HAIDER I, RAZA M A S, IQBAL R, et al. Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages[J]. Journal of Saudi Chemical Society, 2020, 24:974-981.
doi: 10.1016/j.jscs.2020.10.005 URL |
[161] |
GAVILI E, MOOSAVI A A, KAMGAR HAGHIGHI A A. Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean?[J]. Industrial Crops and Products, 2019, 128:445-454.
doi: 10.1016/j.indcrop.2018.11.047 URL |
[162] | SAFAEI KHORRAM M, FATEMI A, KHAN M A, et al. Potential risk of weed outbreak by increasing biochar's application rates in slow-growth legume, lentil (lens culinaris medik.)[J]. Journal of Food Agriculture and Environment, 2018, 98(6):2080-2088. |
[163] |
JOSEPH S, KAMMANN C I, SHEPHERD J G, et al. Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release[J]. Science of the Total Environment, 2018, 618:1210-1223.
doi: 10.1016/j.scitotenv.2017.09.200 URL |
[164] |
PANEQUE M, DE LA ROSA J M, FRANCO-NAVARRO J D, et al. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions[J]. Catena, 2016, 147:280-287.
doi: 10.1016/j.catena.2016.07.037 URL |
[165] |
TANURE M M C, DA COSTA L M, HUIZ H A, et al. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil[J]. Soil and Tillage Research, 2019, 192:164-173.
doi: 10.1016/j.still.2019.05.007 URL |
[166] |
HAIDER G, STEFFENS D, MOSER G, et al. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study[J]. Agriculture, Ecosystems and Environment, 2017, 237:80-94.
doi: 10.1016/j.agee.2016.12.019 URL |
[1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[2] | GU Shujie, QIAN Zhenfeng, LOU Yongming, SHEN Qingqing, PU Fengya, ZENG Dan, MA Hao, HE Lilian, LI Fusheng. Physiological Effects of Inoculated Endophytes on Sugarcane Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 42-47. |
[3] | LI Yunfeng, YAO Zhiping, FU Yanyan, HAN Dong, MA Shuqing. Regional Changes of Maize Drought in Jilin Province Based on the Effective Rainfall Deficit [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 62-69. |
[4] | JIANG Jufang, YANG Hua, HU Wenqing, WEI Yuguo. Effects of Continuous High Temperature and Drought Stress on the Growth of Spring Maize [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 63-68. |
[5] | FAN Xian, QUAN Yiji, YANG Shaolin, LI Rudan, DENG Jun, ZHANG Yuebin. Identification and Evaluation of Drought Resistance in Sugarcane Seedling Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 17-24. |
[6] | SHI Yang, YIN Xilong, LI Wangsheng, XING Wang. PEG Simulated Drought Stress: Effects on Morphological Indices of Drought-tolerant and Drought-sensitive Sugar Beet Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 45-51. |
[7] | REN Sanxue, QI Yue, TIAN Xiaoli, ZHAO Huarong. Responses of Photosynthetic Parameters and Yield of Winter Wheat at Filling Stage to Soil High Humidity and Drought Change [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 96-102. |
[8] | LI Wangsheng, WANG Xueqian, YIN Xilong, SHI Yang, XING Wang. Drought Resistance of Sugar Beet Seedling: Identification and Index Screening [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 17-23. |
[9] | ZHANG Mengfei, LI Shuang, LI Yunsheng, MA Haixia, LIU Yueqiu. Evaluation on the Drought Resistance of Seedlings of Nine Greening Tree Species [J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 38-46. |
[10] | YIN Shanshan, ZHOU Guoyan, GU Bowen, WU Chuncheng, YAN Liying, XIE Yang. Effects of Melatonin Priming on Physiological Characteristics of Cucumber Seedlings Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 30-36. |
[11] | SUN Xipeng, LI Qi, QIAO Yunfa, HU Zhenghua, ZHANG Xuying, LIU Yuanyuan. Warming and Drought in Hailun of Heilongjiang: Effects on Growth and Development of Soybean [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 27-33. |
[12] | ZHANG Ruijiu, MA Hui, JI Lijie, REN Dezhi, LI Shuangdong, ZHANG Yaohui, WANG Lihong. Effects of Drought Stress on Growth and Physiological and Biochemical Indexes of Potato Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 34-39. |
[13] | HAN Zhuojun, CUI Jingjing, PAN Hengyan, LI Youwei, NA Minghui, SONG Baiquan, ZHOU Jianchao, WANG Qiuhong. Morphological Characteristics of Low-nitrogen and High-efficiency Red Beet [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 20-29. |
[14] | ZHENG Zehua, YU Yanlue, MA Zhongfen, ZHU Huaiwei. The Characteristics of Climate Change in Main Growing Stages of Blueberry from 1968 to 2018 in Qingpu, Shanghai [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 97-105. |
[15] | NI Shenhai, WANG Hengli, LIU Jingnan, GU Ying. Characteristics and Causes of Agricultural Drought Disasters in China [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 106-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||