Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (36): 103-110.doi: 10.11924/j.issn.1000-6850.casb2021-0187
Previous Articles Next Articles
ZHANG Wenjing(), CHENG Jianfeng(
), LIU Jie, HE Ping, WANG Zixuan, ZHANG Zujian, JIANG Haiyan
Received:
2021-02-26
Revised:
2021-06-13
Online:
2021-12-25
Published:
2022-02-15
Contact:
CHENG Jianfeng
E-mail:1263011523@qq.com;chjfkarl@163.com
CLC Number:
ZHANG Wenjing, CHENG Jianfeng, LIU Jie, HE Ping, WANG Zixuan, ZHANG Zujian, JIANG Haiyan. Nutrition Physiology of Iron (Fe) in Plants: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 103-110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0187
[1] |
BUESSELER K O, ANDREWS J E, PIKE S M, et al. The effects of iron fertilization on carbon sequestration in the southern ocean[J]. Science, 2004, 304(5669):414-417.
doi: 10.1126/science.1086895 URL |
[2] | 程建峰. 植物生理学[M]. 南昌: 江西高校出版社, 2019: 98. |
[3] | DIXIT S P, RAJAN L, PALANISWAMY D, et al. Importance of iron absorption in human health: An overview[J]. Current nutrition & food science, 2021, 17(3):293-301. |
[4] | MASUDA H, AUNG M S, KOBAYASHI T, et al. Iron biofortification: the gateway to overcoming hidden hunger. In: Costa de Oliveira A, Pegoraro C, Ebeling V V. (eds) The Future of Rice Demand: Quality Beyond Productivity[M]. Cham: Springer, 2020:149-177. |
[5] | 朴建华, 霍军生. 中国居民营养与健康状况监测报告[M]. 北京: 人民卫生出版社, 2019. |
[6] |
LUO T, LEI L, CHEN F, Z et al. Iron homeostasis in the human body and nutritional iron deficiency and solutions in China[J]. Journal of food biochemistry, 2018, 42(4):e12673.
doi: 10.1111/jfbc.2018.42.issue-6 URL |
[7] | 云少君, 赵广华. 植物铁代谢及植物铁蛋白结构与功能研究进展[J]. 生命科学, 2012, 24(8):809-816. |
[8] | RAWAT N, NEELAM K, TIWARI V K, et al. Biofortification of cereals to overcome hidden hunger[J]. Plant breeding, 2013, 132(5):437-445. |
[9] | GUPTA S, MADHAVAN N K, PUNJAL R, et al. Herbs as a dietary source of iron[J]. Nutrition & food science, 2014, 44(5):443-454. |
[10] |
BOUIS H E, WELCH R M. Biofortification: a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south[J]. Crop Science, 2010, 50:S20-S32.
doi: 10.2135/cropsci2009.09.0531 URL |
[11] | BOUIS H E, HOTZ C, MCCLAFFERTY B, et al. Biofortification: a new tool to reduce micronutrient malnutrition[J]. Food & nutrition bulletin, 2011, 32(1Suppl):S31-S40. |
[12] |
GILLIGAN D O. Biofortification, agricultural technology adoption, and nutrition policy: some lessons and emerging challenges[J]. Cesifo economic studies, 2012, 58(2):405-421.
doi: 10.1093/cesifo/ifs020 URL |
[13] |
MASUDA H, AUNG M S, NISHIZAWA N K. Iron biofortification of rice using different transgenic approaches[J]. Rice, 2013, 6(1):40.
doi: 10.1186/1939-8433-6-40 URL |
[14] | PRASAD R, SHIVAY Y S, KUMAR D. Agronomic biofortification of cereal grains with iron and zinc[J]. Advances in agronomy, 2014, 125:55-91. |
[15] | LEVIN C E, LONG J, SIMLER K R, et al. Cultivating nutrition: a survey of viewpoints on integrating agriculture and nutrition[J]. FCND discussion papers No. 154, International Food Policy Research Institute (IFPRI). 2003. |
[16] | 卢士军, 黄家章, 吴鸣, 等. 营养导向型农业的概念,发展与启示[J]. 中国农业科学, 2019, 52(18):3083-3088. |
[17] |
FAN S, YOSEF S, PANDYA-LORCH R. Linking agriculture to nutrition: the evolution of policy[J]. China agricultural economic review, 2020, 12(4):595-604.
doi: 10.1108/CAER-03-2020-0040 URL |
[18] |
SHARMA I K, SABINA D P, DIRK E, et al. Nutrition-sensitive agriculture: a systematic review of impact pathways to nutrition outcomes[J]. Advances in nutrition, 2021, 12(1):251-275.
doi: 10.1093/advances/nmaa103 URL |
[19] | YU H, LI J Y. Short and long term challenges in crop breeding[J]. National science review, 2021, 8(2):1. |
[20] | MENGEL K, KIRKBY E A. Principles of plant nutrition[M]. Dordrecht: Kluwer Academic Publishers, 2001. |
[21] | 地里拜尔·苏里坦, 艾尼瓦尔·买买提, 蔺娟. 土壤中铁锰的形态分布及其有效性研究[J]. 生态学杂志, 2006, 25(2):155-160. |
[22] |
CHENG X, WEI X R, HAO M D, et al. Changes in soil iron fractions and availability in the loess belt of northern China after 28 years of continuous cultivation and fertilization[J]. Pedosphere, 2019, 29(1):123-131.
doi: 10.1016/S1002-0160(17)60331-X URL |
[23] |
GUERINOT M L, YI Y. Iron: nutritious, noxious, and not readily available[J]. Plant physiology, 1994, 104(3):815-820.
doi: 10.1104/pp.104.3.815 URL |
[24] |
COLOMBO C, PALUMBO G, HE J Z, et al. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes[J]. Journal of soils and sediments, 2014, 14(3):538-548.
doi: 10.1007/s11368-013-0814-z URL |
[25] |
BRIAT J F, CURIE C, GAYMARD F. Iron utilization and metabolism in plants[J]. Current Opinion in Plant Biology, 2007, 10(3):276-282.
doi: 10.1016/j.pbi.2007.04.003 URL |
[26] |
ANCUCEANU R, DINU M, HOVANEŢ M V, et al. A survey of plant iron content: a semi-systematic review[J]. Nutrients, 2015, 7(12):10320-10351.
doi: 10.3390/nu7125535 URL |
[27] | BARKER A V, PILBEAM D J. Handbook of plant nutrition (second edition)[M]. CRC Press, 2015. |
[28] |
YANG X, YE Z Q, SHI C H, et al. Genotypic differences in concentrations of iron, manganese, copper, and zinc in polished rice grains[J]. Journal of plant nutrition, 1998, 21(7):1453-1462.
doi: 10.1080/01904169809365495 URL |
[29] | 蔡建成, 曹桂兰, 束爱萍, 等. 水稻地方品种铁含量的差异评价[J]. 植物遗传资源学报, 2009, 10(1):55-59. |
[30] | 高岐, 窦宪民. 土壤—水稻体系总铁含量的测定及其相关性研究[J]. 天津农业科学, 2010, 16(4):66-67. |
[31] | 陈洁, 潘光堂, 李华雄, 等. 玉米种质籽粒铁含量的测定及差异分析[J]. 西南农业学报, 2007, 20(6):1198-1201. |
[32] |
PETIT J M, BRIAT J F, LOBREAUX S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family[J]. Biochemical journal, 2001, 359(3):575-582.
doi: 10.1042/bj3590575 URL |
[33] |
BRIAT J F, DUC C, RAVET K, et al. Ferritins and iron storage in plants[J]. Biochimica et biophysica acta general subjects, 2010, 1800(8):806-814.
doi: 10.1016/j.bbagen.2009.12.003 URL |
[34] | RAVET K, TOURAINE B, BOUCHEREZ J, et al. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis[J]. P1ant Journal for cell & molecular biology, 2010, 57(3):400-412. |
[35] |
SMITH G S, CORNFORTH I S, HENDERSON H V. Iron requirements of C3 and C4 plants[J]. New phytologist, 2010, 97(4):543-556.
doi: 10.1111/nph.1984.97.issue-4 URL |
[36] |
ZHAO G H. Phytoferritin and its implications for human health and nutrition[J]. Biochimica et biophysica acta general subjects, 2010, 1800(8):815-823.
doi: 10.1016/j.bbagen.2010.01.009 URL |
[37] |
MARENTES E, GRUSAK M A. Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.)[J]. Seed science research, 1998, 8(3):367-375.
doi: 10.1017/S0960258500004293 URL |
[38] |
MATTHIAS H, CHRISTOPHE Z, THOMAS W. Quantification of ferritin-bound iron in plant samples by isotope tagging and species-specific isotope dilution mass spectrometry[J]. Analytical chemistry, 2009, 81(17):7368-7372.
doi: 10.1021/ac900885j URL |
[39] | 倪琳琳, 侯炤琪, 封士达, 等. 改良NH4F掩蔽法在测定植物组织二价铁含量中的应用[J]. 植物生理学报, 2015, 51(8):1347-1349. |
[40] |
DUY D, WANNER G, MEDA A R, et al. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport[J]. The plant cell, 2007, 19(3):986-1006.
doi: 10.1105/tpc.106.047407 URL |
[41] | JEONG J, COHU C, KERKEB L, et al. Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions[J]. Proceedings of the national academy of sciences of the united states of america, 2008, 105(30):10619-10624. |
[42] |
BASHIR K, ISHIMARU Y, SHIMO H, N et al. The rice mitochondrial iron transporter is essential for plant growth[J]. Nature communications, 2011, 2:322.
doi: 10.1038/ncomms1326 URL |
[43] |
TARANTINO D, MORANDINI P, RAMIREZ L, et al. Identification of an Arabidopsis mitoferrinlike carrier protein involved in Fe metabolism[J]. Plant physiology and biochemistry, 2011, 49(5):520-529.
doi: 10.1016/j.plaphy.2011.02.003 URL |
[44] |
LANQUAR V, LELIEVRE F, BOLTE S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron[J]. EMBO J, 2005, 24(23):4041-4051.
doi: 10.1038/sj.emboj.7600864 URL |
[45] |
KIM S A, PUNSHON T, LANZIROTTI A, et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1[J]. Science, 2006, 314:1295-1298.
doi: 10.1126/science.1132563 URL |
[46] |
TERRY N, ABADIA J. Function of iron in chloroplasts[J]. Journal of plant nutrition, 1986, 9(3):609-646.
doi: 10.1080/01904168609363470 URL |
[47] |
BASHIR H, QURESHI M I, IBRAHIM M M, et al. Chloroplast and photosystems: impact of cadmium and iron deficiency[J]. Photosynthetica, 2015, 53(3):321-335.
doi: 10.1007/s11099-015-0152-z URL |
[48] |
KROH G E, PILON M. Iron deficiency and the loss of chloroplast iron-sulfur cluster assembly trigger distinct transcriptome changes in Arabidopsis rosettes[J]. Metallomics, 2020, 12(11):1748-1764
doi: 10.1039/d0mt00175a URL |
[49] |
JAMES D W. General summary of the second international symposium on iron nutrition and interactions in plants[J]. Journal of plant nutrition, 1984, 7(1-5):859-864.
doi: 10.1080/01904168409363249 URL |
[50] | REINBOTHE C, BARTSCH S, EGGMNK L L, et al. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins[J]. Proceedings of the national academy of sciences of the united states of america, 2006, 103(12):4777-4782. |
[51] |
FINAZZI G, PETROUTSOS D, TOMIZIOLI M, et al. Ions channels/transporters and chloroplast regulation[J]. Cell calcium, 2015, 58(1):86-97.
doi: 10.1016/j.ceca.2014.10.002 URL |
[52] |
KIM J, REES D. Structural models for the metal centers in the nitrogenase molybdenum-iron protein[J]. Science, 1992, 257(5077):1677-1682.
doi: 10.1126/science.1529354 URL |
[53] |
SIEDOW J N. Plant lipoxygenase: structure and function[J]. Annual review of plant physiology and molecular biology, 1991, 42(1):145-188.
doi: 10.1146/arplant.1991.42.issue-1 URL |
[54] |
IMAM M C, ZHANG S S, MA J F, et al. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress[J]. Nutrients, 2017, 9(7):671.
doi: 10.3390/nu9070671 URL |
[55] | 唐建军, 王永锐. 植物铁素营养的生理生态观[J]. 生态科学, 1995, 14(1):40-47. |
[56] |
CURIE C, PANAVIENE Z, LOULERGUE C, et al. Maize yellow stripe1encodes a membrane protein directly involved in Fe (III) uptake[J]. Nature, 2001, 409(6818):346-349.
doi: 10.1038/35053080 URL |
[57] |
HELL R, STEPHAN U W. Iron uptake, trafficking and homeostasis in plants[J]. Planta, 2003, 216:541-551.
doi: 10.1007/s00425-002-0920-4 URL |
[58] |
RÖMHELD V, MARSCHNER H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses[J]. Plant physiology, 1986, 80(1):175-180.
doi: 10.1104/pp.80.1.175 URL |
[59] |
ROBINSON N J, PROCTER C M, CONNOLLY E L, et al. A ferric-chelate reductase for iron uptake from soils[J]. Nature, 1999, 397(6721):694-697.
doi: 10.1038/17800 URL |
[60] |
MUKHERJEE I, CAMPBELL N H, ASH J S, et al. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper[J]. Planta, 2006, 223(6):1178-1190.
doi: 10.1007/s00425-005-0165-0 URL |
[61] |
SANTI S, SCHMIDT W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots[J]. New phytologist, 2009, 183(4):1072-1084.
doi: 10.1111/nph.2009.183.issue-4 URL |
[62] |
TATO L, DE N P, DONNINI H, et al. Low iron availability and phenolic metabolism in a wild plant species (Parietaria judaica L.)[J]. Plant physiology and biochemistry, 2013, 72:145-153.
doi: 10.1016/j.plaphy.2013.05.017 URL |
[63] |
GRILLET L, OUERDANE L, FLIS P, et al. Ascorbate efflux as a new strategy for iron reduction and transport in plants[J]. Journal of biological chemistry, 2014, 289(5):2515-2525.
doi: 10.1074/jbc.M113.514828 URL |
[64] |
LI H, WANG L, YANG Z M. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron deficiency[J]. Gene, 2015, 554(1):16-24.
doi: 10.1016/j.gene.2014.10.004 URL |
[65] |
HSIEH E J, WATERS B M. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synjournal gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis[J]. Journal of experimental botany, 2016, 67(19):5671-5685.
doi: 10.1093/jxb/erw328 URL |
[66] |
ZHANG X X, ZHANG D, SUN W, et al. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis[J]. International journal of molecular sciences, 2019, 20(10):2424
doi: 10.3390/ijms20102424 URL |
[67] | 张林琳, 刘星星, 祝亚昕, 等. 机理Ⅰ植物铁营养的吸收转运及信号调控机制研究进展[J]. 植物营养与肥料学报2021, 37(1):1-15. |
[68] |
HIGUCHI K, SUZUKI K, NAKANISHI H, et al. Cloning of nicotianamine synthase genes, novel genes involved in the biosynjournal of phytosiderophores[J]. Plant physiology, 1999, 119(2):471-480.
doi: 10.1104/pp.119.2.471 URL |
[69] |
INOUE H, TAKAHASHI M, KOBAYASHI T, et al. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synjournal in rice[J]. Plant molecular biology, 2008, 66(1-2):193-203.
doi: 10.1007/s11103-007-9262-8 URL |
[70] |
NOZOYE T, NAGASAKA S, KOBAYASHI T, et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J]. Journal of biological chemistry, 2011, 286(7):5446-5454.
doi: 10.1074/jbc.M110.180026 URL |
[71] | SINGH S P, KELLER B, GRUISSEM W, et al. Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat[J]. Theoretical & applied genetics, 2016, 130(2):283-292. |
[72] |
BEASLEY J T, BONNEAU J P, JOHNSON A A T. Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.)[J]. PLoS one, 2017, 12(5):e0177061.
doi: 10.1371/journal.pone.0177061 URL |
[73] |
FISHER M, GOKHMAN I, PICK U, et al. A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga Dunaliella salina grown in high salinities[J]. Journal of biological chemistry, 1997, 272(3):1565-1570.
doi: 10.1074/jbc.272.3.1565 URL |
[74] |
SCHWARZ M, ZAMIR A, PICK U. Iron-binding properties of TTf, a salt-induced transferrin from the alga Dunaliella salina[J]. Journal of plant nutrition, 2003, 26(10):2081-2091.
doi: 10.1081/PLN-120024266 URL |
[75] |
MORI S. Iron acquisition by plants[J]. Current opinion in plant biology, 1999, 2(3):250-253.
doi: 10.1016/S1369-5266(99)80043-0 URL |
[76] |
THOMINE S, LELIÈVRE F, DEBARBIEUX E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The plant journal, 2003, 34(5):685-695.
doi: 10.1046/j.1365-313X.2003.01760.x URL |
[77] |
ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific reports, 2012, 2(6071):286.
doi: 10.1038/srep00286 URL |
[78] |
QIN L, HAN P P, CHEN L Y, et al. Genome-wide identification and expression analysis of NRAMP family genes in soybean (Glycine Max L.)[J]. Frontiers in plant science, 2017, 8:1436.
doi: 10.3389/fpls.2017.01436 URL |
[79] |
BECKER R, FRITZ E, MANTEUFFEL R. Subcellular localization and characterization of excessive iron in the nicotianamine-less tomato mutant chloronerva[J]. Plant physiology, 1995, 108(1):269-275.
doi: 10.1104/pp.108.1.269 URL |
[80] | THOMINE S, WANG R C, WARD J M, et al. I. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes[J]. Proceedings of the national academy of sciences of the united states of america, 2000, 97(9):4991-4996. |
[81] |
BERECZKY Z, WANG H Y, SCHUBERT V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J]. Journal of biological chemistry, 2003, 278(27):24697-24704.
doi: 10.1074/jbc.M301365200 URL |
[82] | THOMINE S, LANQUAR V. Iron Transport and Signaling in Plants[M]// Transporters and Pumps in Plant Signaling. Berlin Heidelberg: Springer, 2011. |
[83] |
BUGHIO N, TAKAHASHI M, YOSHIMURA E, et al. Light-dependent iron transport into isolated barley chloroplasts[J]. Plant and cell physiology, 1997, 38(1):101-105.
doi: 10.1093/oxfordjournals.pcp.a029079 URL |
[84] |
FENG H Z, AN F Y, ZHANG S Z, et al. Light-regulated, tissue- and cell differentiation-specific expression of the Arabidopsis Fe (Ⅲ)-chelate reductase gene AtFRO6[J]. Plant physiology, 2006, 140(4):1345-1354.
doi: 10.1104/pp.105.074138 URL |
[85] | HAN J H, SONG X F, LI P, et al. Maize ZmFDR3 localized in chloroplasts is involved in iron transport[J]. Science in china, 2009, 52(9):864-871. |
[86] |
HEAZLEWOOD J L, TONTI-FILIPPINI J S, GOUT A M, et al. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins[J]. The plant cell, 2004, 16(1):241-256.
doi: 10.1105/tpc.016055 URL |
[87] |
BIENFAIT H F. Mechanisms in Fe-efficiency reaction s of higher plants[J]. Journal of plant nutrition, 1988, 11(3):605-629.
doi: 10.1080/01904168809363828 URL |
[88] |
YOKOSHO K, YAMAJI N, UENO D, et al. OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice[J]. Plant physiology, 2009, 149:297-305.
doi: 10.1104/pp.108.128132 URL |
[89] |
ROGERS E E, GUERINOT M L. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis[J]. The plant cell, 2002, 14(8):1787-1799.
doi: 10.1105/tpc.001495 URL |
[90] |
DURRETT T P, GASSMANN W, ROGERS E E. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation[J]. Plant physiology, 2007, 144(1):197-205.
doi: 10.1104/pp.107.097162 URL |
[91] |
TSUKAMOTO T, NAKANISHI H, UCHIDA H, et al. 52Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem[J]. Plant and cell physiology, 2009, 50(1):48-57.
doi: 10.1093/pcp/pcn192 URL |
[92] |
KRÜGER C, BERKOWITZ O, STEPHAN U W, et al. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L[J]. Journal of biological chemistry, 2002, 277(28):25062-25069.
doi: 10.1074/jbc.M201896200 URL |
[93] |
CURIE C, CASSIN G, COUCH D, et al. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters[J]. Annals of botany, 2009, 103(1):1-11.
doi: 10.1093/aob/mcn207 URL |
[94] |
NISHIYAMA R, KATO M, NAGATA S, et al. Identification of Zn-nicotianamine and Fe-2-deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.)[J]. Plant and cell physiology, 2012, 53(2):381-390.
doi: 10.1093/pcp/pcr188 URL |
[95] |
HAYDON M J, KAWACHI M, WIRTZ M, Kramer U, et al. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis[J]. The plant cell, 2012, 24(2):724-737.
doi: 10.1105/tpc.111.095042 URL |
[96] |
ISHIMARU Y, MASUDA H, BASHIR K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. The plant journal, 2010, 62(3):379-390.
doi: 10.1111/tpj.2010.62.issue-3 URL |
[97] |
SENOURA T, SAKASHITA E, KOBAYASHI T, et al. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains[J]. Plant molecular biology, 2017, 95(4-5):1-13.
doi: 10.1007/s11103-017-0621-9 URL |
[98] |
INOUE H, KOBAYASHI T, NOZOYE T, et al. Rice OsYSL15 is an iron -regulated iron (Ⅲ) - deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings[J]. Journal of biological chemistry, 2009, 284(6):3470-3479.
doi: 10.1074/jbc.M806042200 URL |
[99] |
ZHENG L, YAMAJI N, YOKOSHO K, et al. YSL16 is a phloem - localized transporter of the copper - nicotianamine complex that is responsible for copper distribution in rice[J]. The plant cell, 2012, 24(9):3767-3782.
doi: 10.1105/tpc.112.103820 URL |
[100] |
AOYAMA T, KOBAYASHI T, TAKAHASHI M, et al. OsYSL18 is a rice iron (Ⅲ) - deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints[J]. Plant molecular biology, 2009, 70(6):681-692.
doi: 10.1007/s11103-009-9500-3 URL |
[101] |
MENDOZACOZATL D G, XIE Q Q, AKMAKJIAN G Z, et al. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds[J]. Molecular plant, 2014, 7(9):1455-1469.
doi: 10.1093/mp/ssu067 URL |
[102] |
ZHAI Z Y, GAYOMBA S R, JUNG H I, et al. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis[J]. The plant cell, 2014, 26(5):2249-2264.
doi: 10.1105/tpc.114.123737 URL |
[103] |
KHAN M A, CASTRO-GUERRERO N A, MCINTURF S A, et al. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots[J]. The plant cell and environment, 2018, 41(10):2263-2276.
doi: 10.1111/pce.v41.10 URL |
[1] | LUO Xianfu, LIU Wenqiang, PAN Xiaowu, DONG Zheng, LIU Sanxiong, LIU Licheng, YANG Biaoren, SHENG Xinnian, LI Xiaoxiang. Mapping of Plant Height QTL Using NILs Derived from Residual Heterozygous Lines in Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 1-5. |
[2] | HUANG Yu, CHEN Bin, XIAO Guanli. The Physiological Response of the Local Rice Variety of ‘Acuce’ of Hani Nationality in Yunnan Against the Feeding of Nilaparvata lugens Stål [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 123-129. |
[3] | JI Kun, WANG Bin, ZHAO Bowen, XUE Hao, WU Jianmin, ZHU Xiaojian, WANG Yixin, ZHAO Haijun, HAN Zanping. Different Maize Germplasm Materials: Grey Correlation Analysis of Plant and Ear-kernel Traits [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 27-32. |
[4] | LI Xinghua, WANG Huan, ZHANG Sheng, CAI Xingxing, ZHOU Qiang, ZHOU Nan. Nitrogen Application Rate and Mode: Effects on Yield and Dry Matter Accumulation and Transport After Flowering of Late Indica Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 6-13. |
[5] | SUN Shuqing, DING Wei, SUN Rui, ZHANG Xicai, LAN Guoyu, CHEN Wei, YANG Chuan, WU Zhixiang. Soil Bacterial Community of Rubber Plantations of Different Ages of Stand: Composition and Diversity Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 93-100. |
[6] | YIN Tingting, LI Zhihui, SU Jiahe, WU Shidi, XU Hongyan, HE Shuai, LIU Pei, LI Xiangqian. Nano-selenium Prepared by Biological Method: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 33-41. |
[7] | DONG Wencai, LIU Xianbin, LI Hongmei, ZHAO Shuangmei, BAO Jinmei, SHEN Jianping, LIANG Fang, LU Mei. Effects of Calcium Supply with Varying Levels on the Growth and Development of Woody Ornamental Plants [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 42-50. |
[8] | LIU Peng, WU Qiaohua, SHU Huili, ZHOU Liyin, WANG Xiaodong. The Response Mechanism of Camellia oleifera to Stress Factors: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 24-28. |
[9] | ZHENG Peifeng, JIANG Xiaolei, ZHAI Yanlin, GUO Shaoxia, LI Wei. PGPR in Atrazine Contaminated Soil: Effect on the Growth and Physiology of Zoysia japonica Steud [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 124-131. |
[10] | WANG Yan, WANG Liwei, ZHAO Hongyan, ZHAO Min, YANG Hongyan. Characteristics of Nutrients and Microbial Community Composition of Different Panax ginseng Cultivation Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 60-68. |
[11] | ZHANG Riqian, HE Mengying, QIAN Meijiao, ZHANG Xue, LIU Yilin, WAN Chuanjie, ZHANG Zhen. Alternanthera philoxeroides in Different Habitats: Occurrence of Stamen Feminization and Its Distribution Pattern Within the Inflorescence [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 29-35. |
[12] | XIAO Wenmin, ZHANG Hong, REN Zhihong, WU Huanhuan, YANG Shengxiang, WANG Junjie, SUN Haiwei. Effects of Color Shading on Summer Tea in North China [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 36-45. |
[13] | YIN Xundong, LV Guangde, MOU Qiuhuan, MI Yong, YIN Fuwei, LI Ning, QIAN Zhaoguo, WU Ke. Effects of Different Sowing Amounts on Yield and Dry Matter Production and Transport of ‘Xinmai 296’ [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 1-7. |
[14] | WANG Yan, XU Meimei, SHAN Lianhui, GOU Huan, TONG Yujia, AN Xinying. Current Status of Research on Major Plant Epidemic Based on Bibliometrics and Patentometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 144-154. |
[15] | GAO Wenrui, SUN Yanjun, HAN Bing, LI Decui, FEI Cong, WANG Xiansheng, XU Gang. Effects of Low Light on Plant Growth and Fruit Development of Watermelon [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 39-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||