[1] |
王京波. 设施农业发展与对策分析[J]. 农业开发与装备, 2020, 7:20-26.
|
[2] |
尤春, 陈大军, 吴文丽. 不同授粉方式对设施番茄产量、品质及效益的影响[J]. 长江蔬菜, 2020(24):56-58.
|
[3] |
郭宝贝, 张东霞, 刘丽, 等. 苹果不同授粉方式对果实发育的影响[J]. 山西农业科学, 2018, 46(10):1602-1606.
|
[4] |
邵有全, 祁海萍. 果蔬昆虫授粉增产技术[M]. 北京: 金盾出版社, 2010.
|
[5] |
乔志霞. 农业劳动力老龄化对苹果户生产行为影响研究[D]. 杨凌: 西北农林科技大学, 2018.
|
[6] |
MCGEE J, MATHEW S J, GONZALEZ F. Unmanned aerial vehicle and artificial intelligence for thermal target detection in search and rescue applications[C]// 2020 International conference on unmanned aircraft systems (ICUAS). 2020.
|
[7] |
苏伟, 王伟, 刘哲, 等. 无人机影像反演玉米冠层LAI和叶绿素含量的参数确定[J]. 农业工程学报, 2020(19). DOI: 10.11975/j.issn.1002-6819.2020.19.007.
doi: 10.11975/j.issn.1002-6819.2020.19.007
|
[8] |
LIU Z, WAN W, HUANG J, et al. Progress on key parameters inversion of crop growth based on unmanned aerial vehicle remote sensing[J]. Nongye gongcheng xuebao/Transactions of the chinese society of agricultural engineering, 2018, 34(24):60-71.
|
[9] |
屈省源. 基于自适应调控技术的农田监测无人机设计[J]. 农机化研究, 2021(9). DOI: 10.3969/j.issn.1003-188X.2021.09.038.
doi: 10.3969/j.issn.1003-188X.2021.09.038
|
[10] |
Cabreira T M, Brisolara L B, Ferreira P R. Survey on coverage path planning with unmanned aerial vehicles[J]. Drones, 2019, 3(1):4.
doi: 10.3390/drones3010004
URL
|
[11] |
王玲, 兰玉彬, HOFFMAN W C, 等. 微型无人机低空变量喷药系统设计与雾滴沉积规律研究[J]. 农业机械学报, 2016, 47(1):15-22.
|
[12] |
陈盛德, 兰玉彬, 李继宇, 等. 植保无人机航空喷施作业有效喷幅的评定与试验[J]. 农业工程学报, 2017, 33(7):82-90.
|
[13] |
王士林, 雷哓晖, 唐玉新, 等. 基于多旋翼授粉无人机的梨树喷雾授粉技术[J]. 江苏农业科学, 2020, 48(23):210-214.
|
[14] |
杨知伦, 葛鲁振, 祁力钧, 等. 植保无人机旋翼下洗气流对喷幅的影响研究[J/OL]. 农业机械学报, 2018, 49(1):116-122.
|
[15] |
杨风波, 薛新宇, 蔡晨, 等. 多旋翼植保无人机悬停下洗气流对雾滴运动规律的影响[J]. 农业工程学报, 2018, 34(2):64-73.
|
[16] |
YUE X, LI X G, GAO X Q, et al. The arabidopsis phytohormone crosstalk network involves a consecutive metabolic route and circular control units of transcription factors that regulate enzyme-encoding genes[J]. BMC systems biology, 2016, 10(1):1153-65.
|
[17] |
YUE X, GAO X Q, WANG F, et al. Transcriptional evidence for inferred pattern of pollen tube-stigma metabolic coupling during pollination[J]. Plos one, 2014, 9(9): e107046. https://doi.org/10.1371/journal.pone.0107046.
doi: 10.1371/journal.pone.0107046
URL
|
[18] |
JUAN S. Aerial mapping of forests affected by pathogens using UAVs, Hyperspectral sensors, and artificial intelligence[J]. Sensors, 2018(4). DOI: 10.3390/s18040944.
doi: 10.3390/s18040944
|
[19] |
KARACA Y, CICEK M, TATLI O, et al. The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations[J]. The American journal of emergency medicine, 2018, 36(4):583-588.
doi: 10.1016/j.ajem.2017.09.025
URL
|
[20] |
解季明, 丁新颖, 张宇杰, 等. 野慈姑(Sagittaria trifolia)人工授粉的有效性探究:授粉工具与花粉保存[J]. 生态学报, 2021, 41(13):5446-5453.
|
[21] |
蔡彦伦. 低空无人机接触式静电喷雾系统设计与试验[D]. 镇江: 江苏大学, 2017.
|
[22] |
潘波, 王冰洁, 姜蕾, 等. 两种植保无人机对火龙果冠层的作业参数优化[J]. 植物保护学报, 2021, 48(3):528-536.
|
[23] |
李思勰, 知谷APP. 大疆T20全新植保无人机发布,安全高效智能[J]. 农业机械, 2019(12):119-120.
|
[24] |
PÓŁKA M, PTAK S, KUZIORA Ł. The use of UAV's for search and rescue operations[J]. Procedia engineering, 2017, 192:748-752.
doi: 10.1016/j.proeng.2017.06.129
URL
|