Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (30): 126-134.doi: 10.11924/j.issn.1000-6850.casb2022-0166
Special Issue: 生物技术
Previous Articles Next Articles
HAN Lixin1,2(), REN Hongbo3, MENG Li1,2(
)
Received:
2022-03-09
Revised:
2022-06-15
Online:
2022-10-25
Published:
2022-10-27
Contact:
MENG Li
E-mail:1076454014@qq.com;mengli198026@126.com
CLC Number:
HAN Lixin, REN Hongbo, MENG Li. Flavor Substances in Rice: Formation and Change[J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 126-134.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2022-0166
样品 | 方法 | 化合物种类 | 特殊化合物 | 主要化合物 | 文献 |
---|---|---|---|---|---|
泰国大米 | 固相微萃取(SPME)-GC-MS | 91种 | 正己醇、1-辛烯-3-醇、苯酚和1-辛烯-3-醇 | 烷烃、酮类和醛类 | [ |
五常大米 | SPME-GC-MS | 68种 | 2-氨基-3,5-二氮-4H-咪唑-4-酮、香草醛和3-甲基苯酚 | 烷烃、酮类和醛类 | [ |
粳稻 | SPME-GC-MS | 94种 | 2-环己酮和2-癸酮 | 醛类、酮类和醇类 | [ |
籼稻 | SPME-GC-MS | 149种 | 壬醇、癸醇和2-乙基-1-己醇 | 醛类、酮类和醇类 | [ |
大米 | SPME-GC-MS | 93种 | 2-乙酰基-1-吡咯啉 | 烷烃、醇类和醛类 | [ |
大米 | 顶空固相微萃取 (HS-SPME)-GC-MS | 159种 | 2-乙酰基-1-吡咯啉 | 烷烃、萜烯和酯类 | [ |
印度大米 | HS-SPME-GC-MS | 172种 | 2-乙酰基-1-吡咯啉、2-戊基呋喃 | 烷烃、酯类 | [ |
越南大米 | HS-SPME-GC-MS | 146种 | 吲哚 | 烷烃、酯类 | [ |
大粒溪香 | SPME-GC-MS | 52种 | 烷烃、醛类和酯类 | [ | |
大粒香 | SPME-GC-MS | 39种 | 烷烃、醛类和酯类 | [ | |
帅优63 | SPME-GC-MS | 37种 | 烷烃、醛类和酯类 | [ | |
金麻粘 | SPME-GC-MS | 28种 | 烷烃、醛类和酯类 | [ | |
米饭 | GC-MS | 40种 | 2-乙酰基-1-吡咯啉(2-AP) | 醛类物质 | [ |
圣稻米饭 | SPME-GC-MS | 29种 | 酮类和醛类 | [ | |
籼粳杂交稻米 | 气相离子迁移谱(GC-IMS) | 49种 | 苯甲醛和乙酸丁酯 | 醛及酯类物质 | [ |
香稻 | SPME-GC-MS | 80种 | 2-乙酰基-1-吡咯啉 | 醛类、烷烃和羧酸 | [ |
五常香米 | HS-SPME-GC-MS | 83种 | 3,5-二甲基己醇、十一醛、丙烯酸-2-乙基己酯、和正壬醇 | 烷烃、酯类和醛类 | [ |
五常非香米 | HS-SPME-GC-MS | 73种 | 烷烃、醛类 | [ |
样品 | 方法 | 化合物种类 | 特殊化合物 | 主要化合物 | 文献 |
---|---|---|---|---|---|
泰国大米 | 固相微萃取(SPME)-GC-MS | 91种 | 正己醇、1-辛烯-3-醇、苯酚和1-辛烯-3-醇 | 烷烃、酮类和醛类 | [ |
五常大米 | SPME-GC-MS | 68种 | 2-氨基-3,5-二氮-4H-咪唑-4-酮、香草醛和3-甲基苯酚 | 烷烃、酮类和醛类 | [ |
粳稻 | SPME-GC-MS | 94种 | 2-环己酮和2-癸酮 | 醛类、酮类和醇类 | [ |
籼稻 | SPME-GC-MS | 149种 | 壬醇、癸醇和2-乙基-1-己醇 | 醛类、酮类和醇类 | [ |
大米 | SPME-GC-MS | 93种 | 2-乙酰基-1-吡咯啉 | 烷烃、醇类和醛类 | [ |
大米 | 顶空固相微萃取 (HS-SPME)-GC-MS | 159种 | 2-乙酰基-1-吡咯啉 | 烷烃、萜烯和酯类 | [ |
印度大米 | HS-SPME-GC-MS | 172种 | 2-乙酰基-1-吡咯啉、2-戊基呋喃 | 烷烃、酯类 | [ |
越南大米 | HS-SPME-GC-MS | 146种 | 吲哚 | 烷烃、酯类 | [ |
大粒溪香 | SPME-GC-MS | 52种 | 烷烃、醛类和酯类 | [ | |
大粒香 | SPME-GC-MS | 39种 | 烷烃、醛类和酯类 | [ | |
帅优63 | SPME-GC-MS | 37种 | 烷烃、醛类和酯类 | [ | |
金麻粘 | SPME-GC-MS | 28种 | 烷烃、醛类和酯类 | [ | |
米饭 | GC-MS | 40种 | 2-乙酰基-1-吡咯啉(2-AP) | 醛类物质 | [ |
圣稻米饭 | SPME-GC-MS | 29种 | 酮类和醛类 | [ | |
籼粳杂交稻米 | 气相离子迁移谱(GC-IMS) | 49种 | 苯甲醛和乙酸丁酯 | 醛及酯类物质 | [ |
香稻 | SPME-GC-MS | 80种 | 2-乙酰基-1-吡咯啉 | 醛类、烷烃和羧酸 | [ |
五常香米 | HS-SPME-GC-MS | 83种 | 3,5-二甲基己醇、十一醛、丙烯酸-2-乙基己酯、和正壬醇 | 烷烃、酯类和醛类 | [ |
五常非香米 | HS-SPME-GC-MS | 73种 | 烷烃、醛类 | [ |
种类 | 挥发性化合物 | 化学式 | 气味描述 | 文献 |
---|---|---|---|---|
烷烃 | 3-甲基十一烷 | C12H26 | 熟蔬菜味、花香 | [ |
5-甲基十三烷 | C14H30 | 熟蔬菜味、花香、爆米花味 | [ | |
十四烷 | C14H30 | 花香 | [ | |
十五烷 | C15H32 | 青草味 | [ | |
醇类 | 醇类 | 原生、浓郁香味 | [ | |
1-辛烯-3-醇 | C8H16O | 蘑菇香 | [ | |
1-戊醇 | C5H12O | 水果味 | [ | |
1-己醇 | C6H14O | 苹果香 | [ | |
1-庚醇 | C7H16O | 甜香、坚果味 | [ | |
1-壬醇 | C9H20O | 玫瑰花蜡和果香 | [ | |
1-癸醇 | C10H22O | 甜香、花香和果香 | [ | |
2-甲基-1-丁醇 | C5H12O | 花香味 | [ | |
2-乙基-1-己醇 | C8H18O | 嫩叶清香 | [ | |
苯甲醇 | C7H8O | 甜味 | [ | |
醛类 | 3-甲基丁醛 | C5H10O | 麦芽味 | [ |
己醛 | C6H12O | 清香果香 | [ | |
戊醛 | C5H10O | 木香,水果香 | [ | |
辛醛 | C8H16O | 柑橘香 | [ | |
庚醛 | C7H14O | 水果香 | [ | |
壬醛 | C9H18O | 玫瑰、柑橘香 | [ | |
癸醛 | C10H20O | 甜香、柑橘香花香 | [ | |
苯甲醛 | C7H6O | 苦杏仁、樱桃香 | [ | |
苯乙醛 | C8H8O | 熟蔬菜 | [ | |
糠醛 | C5H4O2 | 苦杏仁味 | [ | |
反-2-辛烯醛 | C8H14O | 坚果香 | [ | |
反-2-壬烯醛 | C9H16O | 脂肪、牛油、豆类、黄瓜和木质类香 | [ | |
顺-2-庚烯醛 | C7H12O | 奶香 | [ | |
(反,反)-2,4-癸二烯醛 | C10H16O | 脂肪和蜡状气味 | [ | |
香草醛 | C8H8O3 | 香草味 | [ | |
异香草醛 | C8H8O3 | 爆米花味 | [ | |
酮类 | 酮类 | 花香和果香 | [ | |
6-甲基-5-庚烯-2-酮 | C8H14O | 柠檬香 | [ | |
香叶基丙酮 | C13H22O | 花香 | [ | |
3-辛烯-2-酮 | C8H14O | 橘味,草药香 | [ | |
3-壬烯-2-酮 | C9H16O | 草药和花香 | [ | |
2-丁酮 | C4H8O | 辛辣气味 | [ | |
2-庚酮 | C7H14O | 梨香 | [ | |
2-癸酮 | C10H20O | 桃子香 | [ | |
2-辛酮 | C8H16O | 牛奶、乳酪、蘑菇香 | [ | |
3-辛酮 | C8H16O | 草药和花香 | [ | |
2-十一酮 | C11H22O | 熟蔬菜 | [ | |
2,3-丁二酮 | C4H6O2 | 清香味 | [ | |
莰酮 | C10H16O | 青草味 | [ | |
种类 | 挥发性化合物 | 化学式 | 气味描述 | 文献 |
酯类 | 甲酸己酯 | C7H14O2 | 清香 | [ |
乙酸甲酯 | C3H6O2 | 清香、甜香味 | [ | |
乙酸乙酯 | C4H8O2 | 果香 | [ | |
乙酸丁酯 | C6H12O2 | 果香 | [ | |
丙酸丁酯 | C7H14O2 | 果香 | [ | |
酸类 | 酸类 | 腐臭味、汗味、药味及塑料味 | [ | |
己酸 | C6H12O2 | 酸味 | [ | |
庚酸 | C7H14O2 | 酸味 | [ | |
辛酸 | C8H16O2 | 酸味 | [ | |
吡嗪 | 吡嗪类 | 焙烤和坚果味 | [ | |
2,3-二甲基吡嗪 | C6H8N2 | 坚果烘烤香 | [ | |
2,5-二甲基吡嗪 | C6H8N2 | 坚果烘烤香 | [ | |
2-乙基-6-甲基吡嗪 | C7H10N2 | 坚果烘烤香 | [ | |
3-乙基-2,5-二甲基吡嗪 | C8H12N2 | 坚果烘烤香 | [ | |
2-甲基吡嗪 | C5H6N2 | 烧烤味 | [ | |
其他 | 吲哚 | C8H7N | 焦油香 | [ |
2-甲氧基苯酚 | C7H8O2 | 烟熏味 | [ | |
4-甲基-2-甲氧基苯酚 | C8H10O2 | 甜味 | [ | |
4-乙烯基苯酚 | C8H8O | 药香味 | [ | |
4-乙烯基愈创木酚 | C9H10O2 | 坚果、辛辣和丁香状气味 | [ | |
2-戊基呋喃 | C9H14O | 果香味和青草味 | [ | |
2-乙酰-1-吡咯啉 | C6H9NO | 爆米花香 | [ | |
2,4-二叔丁基苯酚 | C14H22O | 木香 | [ | |
2-正丁基呋喃 | C8H12O | 坚果烘烤香 | [ |
种类 | 挥发性化合物 | 化学式 | 气味描述 | 文献 |
---|---|---|---|---|
烷烃 | 3-甲基十一烷 | C12H26 | 熟蔬菜味、花香 | [ |
5-甲基十三烷 | C14H30 | 熟蔬菜味、花香、爆米花味 | [ | |
十四烷 | C14H30 | 花香 | [ | |
十五烷 | C15H32 | 青草味 | [ | |
醇类 | 醇类 | 原生、浓郁香味 | [ | |
1-辛烯-3-醇 | C8H16O | 蘑菇香 | [ | |
1-戊醇 | C5H12O | 水果味 | [ | |
1-己醇 | C6H14O | 苹果香 | [ | |
1-庚醇 | C7H16O | 甜香、坚果味 | [ | |
1-壬醇 | C9H20O | 玫瑰花蜡和果香 | [ | |
1-癸醇 | C10H22O | 甜香、花香和果香 | [ | |
2-甲基-1-丁醇 | C5H12O | 花香味 | [ | |
2-乙基-1-己醇 | C8H18O | 嫩叶清香 | [ | |
苯甲醇 | C7H8O | 甜味 | [ | |
醛类 | 3-甲基丁醛 | C5H10O | 麦芽味 | [ |
己醛 | C6H12O | 清香果香 | [ | |
戊醛 | C5H10O | 木香,水果香 | [ | |
辛醛 | C8H16O | 柑橘香 | [ | |
庚醛 | C7H14O | 水果香 | [ | |
壬醛 | C9H18O | 玫瑰、柑橘香 | [ | |
癸醛 | C10H20O | 甜香、柑橘香花香 | [ | |
苯甲醛 | C7H6O | 苦杏仁、樱桃香 | [ | |
苯乙醛 | C8H8O | 熟蔬菜 | [ | |
糠醛 | C5H4O2 | 苦杏仁味 | [ | |
反-2-辛烯醛 | C8H14O | 坚果香 | [ | |
反-2-壬烯醛 | C9H16O | 脂肪、牛油、豆类、黄瓜和木质类香 | [ | |
顺-2-庚烯醛 | C7H12O | 奶香 | [ | |
(反,反)-2,4-癸二烯醛 | C10H16O | 脂肪和蜡状气味 | [ | |
香草醛 | C8H8O3 | 香草味 | [ | |
异香草醛 | C8H8O3 | 爆米花味 | [ | |
酮类 | 酮类 | 花香和果香 | [ | |
6-甲基-5-庚烯-2-酮 | C8H14O | 柠檬香 | [ | |
香叶基丙酮 | C13H22O | 花香 | [ | |
3-辛烯-2-酮 | C8H14O | 橘味,草药香 | [ | |
3-壬烯-2-酮 | C9H16O | 草药和花香 | [ | |
2-丁酮 | C4H8O | 辛辣气味 | [ | |
2-庚酮 | C7H14O | 梨香 | [ | |
2-癸酮 | C10H20O | 桃子香 | [ | |
2-辛酮 | C8H16O | 牛奶、乳酪、蘑菇香 | [ | |
3-辛酮 | C8H16O | 草药和花香 | [ | |
2-十一酮 | C11H22O | 熟蔬菜 | [ | |
2,3-丁二酮 | C4H6O2 | 清香味 | [ | |
莰酮 | C10H16O | 青草味 | [ | |
种类 | 挥发性化合物 | 化学式 | 气味描述 | 文献 |
酯类 | 甲酸己酯 | C7H14O2 | 清香 | [ |
乙酸甲酯 | C3H6O2 | 清香、甜香味 | [ | |
乙酸乙酯 | C4H8O2 | 果香 | [ | |
乙酸丁酯 | C6H12O2 | 果香 | [ | |
丙酸丁酯 | C7H14O2 | 果香 | [ | |
酸类 | 酸类 | 腐臭味、汗味、药味及塑料味 | [ | |
己酸 | C6H12O2 | 酸味 | [ | |
庚酸 | C7H14O2 | 酸味 | [ | |
辛酸 | C8H16O2 | 酸味 | [ | |
吡嗪 | 吡嗪类 | 焙烤和坚果味 | [ | |
2,3-二甲基吡嗪 | C6H8N2 | 坚果烘烤香 | [ | |
2,5-二甲基吡嗪 | C6H8N2 | 坚果烘烤香 | [ | |
2-乙基-6-甲基吡嗪 | C7H10N2 | 坚果烘烤香 | [ | |
3-乙基-2,5-二甲基吡嗪 | C8H12N2 | 坚果烘烤香 | [ | |
2-甲基吡嗪 | C5H6N2 | 烧烤味 | [ | |
其他 | 吲哚 | C8H7N | 焦油香 | [ |
2-甲氧基苯酚 | C7H8O2 | 烟熏味 | [ | |
4-甲基-2-甲氧基苯酚 | C8H10O2 | 甜味 | [ | |
4-乙烯基苯酚 | C8H8O | 药香味 | [ | |
4-乙烯基愈创木酚 | C9H10O2 | 坚果、辛辣和丁香状气味 | [ | |
2-戊基呋喃 | C9H14O | 果香味和青草味 | [ | |
2-乙酰-1-吡咯啉 | C6H9NO | 爆米花香 | [ | |
2,4-二叔丁基苯酚 | C14H22O | 木香 | [ | |
2-正丁基呋喃 | C8H12O | 坚果烘烤香 | [ |
[1] | 谢新华, 肖昕, 李晓方, 等. 水稻香味的研究进展[J]. 中国农学通报, 2004(1):57-59. |
[2] | 刘瑶. 泰国香米和五常大米品质分析和特征性风味成分的研究[D]. 沈阳: 沈阳农业大学, 2018. |
[3] |
MO Z W, WU L, PAN S G, et al. Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice[J]. Rice, 2015, 8(1):9.
doi: 10.1186/s12284-015-0040-y URL |
[4] | 崔琳琳, 赵燊, 周一鸣, 等. 基于GC-MS和电子鼻技术的大米挥发性风味成分分析[J]. 中国粮油学报, 2018, 33(12):134-141. |
[5] | MA R R, TIAN Y Q, CHEN L, et al. Impact of cooling rates on the flavor of cooked rice during storage[J]. Food bioscience, 2020,35(C):100513. |
[6] | LIN J Y, FAN W, GAO Y N, et al. Study on volatile compounds in rice by HS-SPME and GC-MS[J]. Flowers and fungi use scents to mimic each other Science, 2006, 311:806-807. |
[7] | 郝俊光, 杨理章, 樊伟, 等. 顶空衍生固相微萃取测定大米中醛类物质[J]. 食品工业科技, 2014, 35(9):269-274. |
[8] |
ZENG Z, ZHANG H, CHEN J Y, et al, Flavor volatiles of rice during cooking analyzed by modified headspace SPME/GC-MS[J]. Cereal chemistry, 2008, 85(2):140-145.
doi: 10.1094/CCHEM-85-2-0140 URL |
[9] |
BRYANT R J, MCCLUNG A M. Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC-MS[J]. Food chemistry, 2010, 124(2):501-513.
doi: 10.1016/j.foodchem.2010.06.061 URL |
[10] |
YANG D S, SHEWFELT R L, LEE K S, et al, Comparison of odor-active compounds from six distinctly different rice flavor types[J]. Journal of agricultural and food chemistry, 2008, 56(8):2780-2787.
doi: 10.1021/jf072685t pmid: 18363355 |
[11] | XU J Y, LIU K W, ZHANG C. Electronic nose for volatile organic compounds analysis in rice aging[J]. Trends in food science & technology, 2021, 109(prepublish):83-93. |
[12] | 杨晓娜, 王莉, 王韧, 等. 新鲜米饭与方便米饭风味成分分析研究[J]. 食品工业科技, 2012, 33(24):158-160,164. |
[13] |
JIA M, WANG X X, LIU J G, et al. Physicochemical and volatile characteristics present in different grain layers of various rice cultivars[J]. Food chemistry, 2022, 371:131119.
doi: 10.1016/j.foodchem.2021.131119 URL |
[14] |
MATHURE S V, JAWALI N, THENGANE R J, et al, Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice (Oryza sativa L.) cultivars of India[J]. Food chemistry, 2014, 142:383-391.
doi: 10.1016/j.foodchem.2013.07.066 URL |
[15] |
SANSEYA S, HUA Y, CHUMANEE S. The correlation between 2-Acetyl-1-pyrroline content, biological compounds and molecular characterization to the aroma intensities of Thai local rice[J]. Journal of oleo science, 2018, 67(7):893-904.
doi: 10.5650/jos.ess17238 pmid: 29877224 |
[16] |
CH R, CHEVALLIER O, MCCARRON P, et al. Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India[J]. Food chemistry, 2021, 334:127553.
doi: 10.1016/j.foodchem.2020.127553 URL |
[17] | VERMA D K, SRIVASTAV P P. A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review[J]. Food research international, 2020,130(C):108924. |
[18] | HU X Q, LU L, GUO Z L, et al. Volatile compounds, affecting factors and evaluation methods for rice aroma: a review[J]. Trends in food science & technology, 2020, 97(C):136-146. |
[19] |
TANANUWONG K, LERTSIRI S. Changes in volatile aroma compounds of organic fragrant rice during storage underdifferent conditions[J]. Journal of the science of food and agriculture, 2010, 90:1590-1596.
doi: 10.1002/jsfa.3976 URL |
[20] |
CHO S, KAYS S J. Aroma-active compounds of wild rice (Zizania palustris L.)[J]. Food research international, 2013, 54(2):1463-1470.
doi: 10.1016/j.foodres.2013.09.042 URL |
[21] | 杨洁, 熊光权, 程薇, 等. 顶空固相微萃取与气质联用法分析香米中的挥发性成分[J]. 湖北农业科学, 2010, 49(11):2898-2902. |
[22] | 刘敏, 王健健, 刘芳宏, 等. 基于SPME-GC-MS对不同品种大米挥发性物质分析[J]. 中国酿造, 2017, 36(6):170-174. |
[23] | 黄淑贞. 湖南香稻产地土壤特性与稻米品质的关系[J]. 湖南农业科学, 1990(4):37-40. |
[24] | 徐兴凤, 钟业俊, 官斌, 等. 采收期对籼米米饭气味成分的影响[J]. 食品工业科技, 2013, 34(2):123-125. |
[25] |
DITTGEN C L, HOFFMANN J F, CHAVES F C, et al. Discrimination of genotype and geographical origin of black rice grown in Brazil by LC-MS analysis of phenolics[J]. Food chemistry, 2019, 288:297-305.
doi: S0308-8146(19)30458-3 pmid: 30902297 |
[26] |
BRABURY L M T, FITGERALD T L, HENRY R J, et al. The gene for fragrance in rice[J]. Plant biotechnology journal, 2005, 3(3):363-370.
pmid: 17129318 |
[27] |
LOPEZ S J. TaqMan based real time PCR method for quantitative detection of basmati rice adulteration with non-basmati rice[J]. European food research and technology, 2008, 227(2):619-622.
doi: 10.1007/s00217-007-0763-0 URL |
[28] |
CHEN S H, Yang Y, W. Shi, et al. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-Acetyl-1-pyrroline, a major component in rice fragrance[J]. The plant cell, 2008, 20:1850-1861.
doi: 10.1105/tpc.108.058917 URL |
[29] |
LI W B, ZENG X H, LI S L, et al. Development and application of two novel functional molecular markers of BADH2 in rice[J]. Electronic journal of biotechnology, 2020, 46(prepublish):1-7.
doi: 10.1016/j.ejbt.2020.04.004 URL |
[30] |
PRODHAN Z H, FARUQ G, TAHA R M, et al. Agronomic, transcriptomic and metabolomic expression analysis of aroma gene (badh2) under different temperature regimes in rice[J]. International journal of agriculture and biology, 2017, 19(3):569-576.
doi: 10.17957/IJAB/15.0340 URL |
[31] | 苗菁, 苏慧敏, 张敏. 米饭中关键风味化合物的分析[J]. 食品科学, 2016, 37(2):82-86. |
[32] |
TAKEMITSU H, AMAKO M, SAKO Y, et al. Analysis of volatile odor components of superheated steam-cooked rice with a less stale flavor[J]. Food science and technology research, 2016, 22(6):771-778.
doi: 10.3136/fstr.22.771 URL |
[33] |
ZENG Z, ZHANG H, ZHANG T, et al. Analysis of flavor volatiles of glutinous rice during cooking by combined gas chromatography-mass spectrometry with modified headspace solid-phase microextraction method[J]. Journal of food composition and analysis, 2009, 22(4):347-353.
doi: 10.1016/j.jfca.2008.11.020 URL |
[34] |
MA R R, TIAN Y Q, ZHANG H H, et al. Interactions between rice amylose and aroma compounds and their effect on rice fragrance release[J]. Food chemistry, 2019, 289:603-608.
doi: S0308-8146(19)30587-4 pmid: 30955654 |
[35] | 周小理, 王惠, 周一鸣, 等. 不同烹煮方式对米饭食味品质的影响[J]. 食品科学, 2017, 38(11):75-80. |
[36] | 张敏, 苗菁, 苏慧敏, 等. 不同品种稻米的米饭风味分析[J]. 食品科学, 2017, 38(16):110-114. |
[37] | 张敏, 苏慧敏, 王子元. 稻米加工对米饭风味的影响[J]. 中国粮油学报, 2017, 32(9):8-14. |
[38] |
ZENG M M, ZHANG L X, HE Z Y, et al. Determination of flavor components of rice bran by GC-MS and chemometrics[J]. Analytical methods, 2012, 4(2):539.
doi: 10.1039/c2ay05671b URL |
[39] |
CHOI S, SEO H S, LEE K R, et al. Effect of milling and long-term storage on volatiles of black rice (Oryza sativa L.) determined by headspace solid-phase microextraction with gas chromatography-mass spectrometry[J]. Food chemistry, 2018, 276:572-582.
doi: 10.1016/j.foodchem.2018.10.052 URL |
[40] |
YUAN B, ZHAO C J, YAN M, et al. Influence of gene regulation on rice quality: impact of storage temperature and humidity on flavor profile[J]. Food chemistry, 2019, 283:141-147.
doi: S0308-8146(19)30110-4 pmid: 30722853 |
[41] | CHEN G, YAN L, PAN Q F, et al. Analysis of the key aroma volatile compounds in rice bran during storage and processing via HS-SPME GC/MS[J]. Journal of cereal science, 2021(prepublish):103178. |
[42] | ZHAO Q Y, XUE Y, SHEN Q. Changes in the major aroma-active compounds and taste components of Jasmine rice during storage[J]. Food research international, 2020, 133(prepublish):109160. |
[43] |
SUZUKI Y, ISE K, LI C Y, et al. Volatile components in stored rice [Oryza sativa (L.)] of varieties with and without lipoxygenase-3 in seeds[J]. Journal of agricultural and food chemistry, 1999, 47(3):1119-1124.
doi: 10.1021/jf980967a URL |
[44] |
GUAN B B, ZHAO J W, JIN H J, et al. Determination of rice storage time with colorimetric sensor Array[J]. Food analytical methods, 2017, 10(4):1054-1062.
doi: 10.1007/s12161-016-0664-6 URL |
[45] |
YI C P, ZHU H, TONG L T, et al. Volatile profiles of fresh rice noodles fermented with pure and mixed cultures[J]. Food research international, 2019, 119:152-160.
doi: S0963-9969(19)30057-2 pmid: 30884644 |
[46] |
GRIGLIONE A, LIBERTO E, CORDERO C, et al. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality[J]. Food chemistry, 2015, 172:305-313.
doi: 10.1016/j.foodchem.2014.09.082 pmid: 25442558 |
[47] |
NIU Y W, YAO Z M, XIAO Z B, et al. Sensory evaluation of the synergism among ester odorants in light aroma-type liquor by odor threshold, aroma intensity and flash GC electronic nose[J]. Food research international, 2018, 113:102-114.
doi: S0963-9969(18)30018-8 pmid: 30195503 |
[48] | WANG N, CHEN S, ZHOU Z M. Age-dependent characterization of volatile organic compounds and age discrimination in Chinese rice wine using an untargeted GC/MS-based metabolomic approach[J]. Food chemistry, 2020, 325(prepublish):126900. |
[49] |
TAKAHASHI S, NAMIOKAET Y, AZIS H R, et al. Prohydrojasmon promotes the accumulation of phenolic compounds in red leaf lettuce[J]. Plants, 2021, 10(9):1920.
doi: 10.3390/plants10091920 URL |
[50] |
SHI J Y, ZHANG T, GENG S F, et al. Effect of accumulated temperature on flavour and microbial diversity of japonica rice during storage[J]. Journal of stored products research, 2021, 92:101779.
doi: 10.1016/j.jspr.2021.101779 URL |
[51] | 郭涛, 王海凤, 薛芳, 等. 基于顶空固相微萃取结合气相色谱-质谱法分析圣稻2620挥发性成分[J]. 安徽农业科学, 2019, 47(11):198-200. |
[52] | 朱麟, 林旭东, 何悦, 等. 甬优系列籼粳杂交稻米挥发性风味成分分析[J/OL]. 中国粮油学报:1-12[2022-01-07]. |
[53] |
DIAS L G, HACKE A, BERGARA S F, et al. Identification of volatiles and odor-active compounds of aromatic rice by OSME analysis and SPME/GC-MS[J]. Food research international, 2021, 142:110206.
doi: 10.1016/j.foodres.2021.110206 URL |
[54] | 黄亚伟, 徐晋, 王若兰, 等. HS-SPME/GC-MS对五常大米中挥发性成分分析[J]. 食品工业, 2016, 37(4):266-269. |
[55] | 马佳佳, 乔中英, 黄桂丽, 等. 苏香粳大米的风味特征和品质分析[J/OL]. 中国粮油学报:1-16[2022-01-13]. |
[56] | 赵卿宇, 王占占, 陈博睿, 等. 大米储藏期间风味品质的变化研究[J]. 中国食品学报, 2021, 21(6):203-215. |
[1] | ZHOU Dongdong, ZHANG Jun, GE Mengjie, LIU Zhonghong, ZHU Xiaohuan, LI Chunyan. Effects of Different Nitrogen Treatments on Grain Yield, Nitrogen Utilization Efficiency and Quality of Late-sowing Wheat ‘Huaimai 36’ Following Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 1-7. |
[2] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[3] | LUO Xianfu, LIU Wenqiang, PAN Xiaowu, DONG Zheng, LIU Sanxiong, LIU Licheng, YANG Biaoren, SHENG Xinnian, LI Xiaoxiang. Mapping of Plant Height QTL Using NILs Derived from Residual Heterozygous Lines in Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 1-5. |
[4] | ZHANG Shuangyan, REN Hao, DING Wenqing, WU Yutao. Research Progress on Material Utilization of Agricultural Waste Rice Husk [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 101-108. |
[5] | HUANG Yu, CHEN Bin, XIAO Guanli. The Physiological Response of the Local Rice Variety of ‘Acuce’ of Hani Nationality in Yunnan Against the Feeding of Nilaparvata lugens Stål [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 123-129. |
[6] | SHI Yonghai, CAO Xiangde, XU Jiabo. Effect of COVID-19 Epidemic on Alosa sapidissima Production in China and the Countermeasures [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 151-156. |
[7] | LI Xinghua, WANG Huan, ZHANG Sheng, CAI Xingxing, ZHOU Qiang, ZHOU Nan. Nitrogen Application Rate and Mode: Effects on Yield and Dry Matter Accumulation and Transport After Flowering of Late Indica Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 6-13. |
[8] | YE Pei, LIU Kequn, SHEN Shuanghe, LIU Kaiwen, LIU Zhixiong, DENG Yanjun. Risk Analysis and Regionalization of Heat Damage During Heading and Flowering Stage of Mid-season Rice in Hubei Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 110-117. |
[9] | WANG Yifan, LAO Xiaocan, YU Liping, YE Hailong. Rice Variety ‘Yongyou 15’: The Suitability of Meteorological Conditions for Sowing by Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 106-109. |
[10] | LIU Xiaohang, MA Shuqing, ZHAO Jing, QUAN Hujie, DENG Kuicai, CHAI Qingrong. Yield Response of Japonica Rice of Northeast China to Low Temperature in Different Time Periods of Booting Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 91-98. |
[11] | LI Xuefeng, WANG Jian, YE Xiaoyuan, ZHANG Xiuting, WANG Lixue. Plant Aqueous Extract of Momordica charantia: Effects on Rice Seed Germination and Seedling Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 1-7. |
[12] | YAN Yuntao, HE Xi, ZHANG Haiqing, HE Jiwai. Advances in Research on the Storability of Rice Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 1-8. |
[13] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
[14] | LIU Yuting, HUANG Shiyu, LI Liujia, ZHAO Tianzhang, LI Huiying, SU Zifeng, LONG Xiaowen. Comparative Study on Biological Indexes and Meat Nutritional Value of Cyprinus carpio Under Earth Pond Reared Mode and Rice Field Reared Mode [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 159-164. |
[15] | HU Ping, FENG Minyu, WU Fengyu, CAO Heyu. Suitable Sowing Temperature for Direct Seeding Early Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 70-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||