Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (34): 97-101.doi: 10.11924/j.issn.1000-6850.casb2022-0587
Previous Articles Next Articles
XU Lingqing1,2(), LI Jiajia1,2, CHANG Xiao1,2, ZHANG Yunlong1,2, LIU Dali1,2(
)
Received:
2022-07-10
Revised:
2022-09-27
Online:
2022-12-05
Published:
2022-11-25
Contact:
LIU Dali
E-mail:lingqingxu98@163.com;daliliu_hlju@163.com
CLC Number:
XU Lingqing, LI Jiajia, CHANG Xiao, ZHANG Yunlong, LIU Dali. The Mechanism of Soil Nitrogen Mineralization: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 97-101.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2022-0587
[1] | 李佳佳, 魏多, 徐翎清, 等. 甜菜对低氮胁迫的形态学响应机制[J]. 中国农学通报, 2021, 37(36):41-46. |
[2] |
VIDAL E A, ALVAREZ J M, ARAUS V, et al. Nitrate in 2020: Thirty years from transport to signaling networks[J]. Plant cell, 2020, 32(7):2094-2119.
doi: 10.1105/tpc.19.00748 URL |
[3] |
MOREAU D, BARDGETT R D, FINLAY R D, et al. A plant perspective on nitrogen cycling in the rhizosphere[J]. Functional ecology, 2019, 33(4):540-552.
doi: 10.1111/1365-2435.13303 |
[4] |
SCHULTEN H R, SCHNITZER M. The chemistry of soil organic nitrogen: a review[J]. Biology and fertility of soils, 1997, 26(1):1-15.
doi: 10.1007/s003740050335 URL |
[5] |
KEUPER F, DORREPAAL E, VAN BODEGOM P M, et al. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species[J]. Global change biology, 2017, 23(10):4257-4266.
doi: 10.1111/gcb.13804 pmid: 28675586 |
[6] |
GUNTINAS M E, LEIROS M C, TRASAR-CEPEDA C, et al. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study[J]. European journal of soil biology, 2012, 48:73-80.
doi: 10.1016/j.ejsobi.2011.07.015 URL |
[7] | 杜薇, 孙楠, 周古月, 等. 温湿度对不同管理方式高寒草甸土壤氮矿化的影响[J]. 草原与草坪, 2018, 38(4):1-11. |
[8] |
CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of earth's nitrogen cycle[J]. Science, 2010, 330:192-196.
doi: 10.1126/science.1186120 pmid: 20929768 |
[9] |
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature reviews microbiology, 2018, 16(5):263-276.
doi: 10.1038/nrmicro.2018.9 pmid: 29398704 |
[10] | 孔得杨. 微生物氮转化途径综述[J]. 西部皮革, 2017, 39(4):42-47. |
[11] | 王翰琨, 吴永波, 刘俊萍, 等. 生物炭对土壤氮循环及其功能微生物的影响研究进展[J]. 生态与农村环境学报, 2022, 38(6):689-701. |
[12] |
JONES D L, SHANNON D, V. MURPHY D, et al. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils[J]. Soil biology and biochemistry, 2004, 36(5):749-756.
doi: 10.1016/j.soilbio.2004.01.003 URL |
[13] |
GE S, WANG S, YANG X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review[J]. Chemosphere, 2015, 140:85-98.
doi: 10.1016/j.chemosphere.2015.02.004 pmid: 25796420 |
[14] |
SOLIMAN M, ELDYASTI A. Ammonia-Oxidizing Bacteria (AOB): Opportunities and applications—a review[J]. Reviews in environmental science and biotechnology, 2018, 17(2):285-321.
doi: 10.1007/s11157-018-9463-4 URL |
[15] |
CáCERES R, MALIńSKA K, MARFà O. Nitrification within composting: A review[J]. Waste management, 2018, 72:119-137.
doi: S0956-053X(17)30795-X pmid: 29153903 |
[16] |
LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442:806-809.
doi: 10.1038/nature04983 URL |
[17] | 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40(1):98-108. |
[18] | 程宽, 李涵, 杜衍红, 等. 微生物介导铁还原耦合氨氧化过程的研究进展[J]. 微生物学报, 2022, 62(6):2249-2264. |
[19] | 陈阳军, 陈敏. 亚硝酸盐氮、氧同位素技术及其在海洋氮循环中的应用[J]. 地球科学进展, 2021, 36(12):1224-1234. |
[20] |
NENDEL C, MELZER D, THORBURN P J. The nitrogen nutrition potential of arable soils[J]. Scientific reports, 2019, 9(1):5851.
doi: 10.1038/s41598-019-42274-y pmid: 30971710 |
[21] |
MILLER K S, GEISSELER D. Temperature sensitivity of nitrogen mineralization in agricultural soils[J]. Biology and fertility of soils, 2018, 54(7):853-860.
doi: 10.1007/s00374-018-1309-2 URL |
[22] | WANG Y, DIAO H-J, DONG K-H, et al. Effects of precipitation change and nitrogen addition on soil net N mineralization in a saline-alkaline grassland of Northern Shanxi Province, China[J]. The journal of applied ecology, 2021, 32(7):2389-2396. |
[23] |
BRAOS L B, RUIZ J, LOPES I G, et al. Mineralization of nitrogen in soils with application of acid whey at different pH[J]. Journal of soil science and plant nutrition, 2020, 20(3):1102-1109.
doi: 10.1007/s42729-020-00196-z URL |
[24] |
WATTS D B, TORBERT H A, FENG Y C, et al. Soil microbial community dynamics as influenced by composted dairy manure, soil properties, and landscape position[J]. Soil science, 2010, 175(10):474-486.
doi: 10.1097/SS.0b013e3181f7964f URL |
[25] |
SRADNICK A, MURUGAN R, OLTMANNS M, et al. Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer[J]. Applied soil ecology, 2013, 63:23-28.
doi: 10.1016/j.apsoil.2012.09.011 URL |
[26] | TIAN F F, JI H F, WANG L Y, et al. Effects of various combinations of fertilizer, soil moisture, and temperature on nitrogen mineralization and soluble organic nitrogen in agricultural soil[J]. Environmental science, 2018, 39(10):4717-4726. |
[27] | AKBARI F, FALLAH S, DAHMARDEH M, et al. Interaction effects of nitrogen and phosphorus fertilizer on nitrogen mineralization of wheat residues in a calcareous soil[J]. Journal of plant nuturition, 2020, 43(1):1-12. |
[28] | HAN B Y, ZHANG W, HU F Y, et al. Influence of artificial root exudates and actual root exudates on the microbial community in pyrene-contaminated soil[J]. Environmental science, 2022, 43(2):1077-1088. |
[29] |
HAICHAR F E, MAROL C, BERGE O, et al. Plant host habitat and root exudates shape soil bacterial community structure[J]. ISME Journal, 2008, 2(12):1221-1230.
doi: 10.1038/ismej.2008.80 pmid: 18754043 |
[30] |
SCHLATTER D C, REARDON C L, JOHNSON-MAYNARD J, et al. Mining the drilosphere: Bacterial communities and denitrifier abundance in a no-till wheat cropping system[J]. Frontiers in microbiology, 2019, 10:1339.
doi: 10.3389/fmicb.2019.01339 pmid: 31316473 |
[31] |
NAVARRO-NOYA Y E, GOMEZ-ACATA S, MONTOYA-CIRIACO N, et al. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem[J]. Soil Biology & biochemistry, 2013, 65:86-95.
doi: 10.1016/j.soilbio.2013.05.009 URL |
[32] | JIANG Y Z, LIU Q L, ZHANG Y G, et al. Effect of crop rotation and continuous cropping on nitrogen mineralization characteristics in yellow cornfield[J]. International journal of agriculture and biology, 2018, 20(5):1175-1180. |
[33] | 于树, 汪景宽, 李双异. 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响[J]. 生态学报, 2008(9):4221-4227. |
[34] | 邬子俊, 段晓清, 李文卿, 等. 混交对亚热带针叶树根际土壤氮矿化和微生物特性的影响[J]. 生态学报, 2022(20):1-11. |
[35] |
CRUZ A F, HAMEL C, HANSON K, et al. Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a brown chernozem[J]. Plant and soil, 2009, 315(1-2):173-184.
doi: 10.1007/s11104-008-9742-x URL |
[36] |
李娟, 赵秉强, 李秀英, 等. 长期不同施肥制度下几种土壤微生物学特征变化[J]. 植物生态学报, 2008(4):891-899.
doi: 10.3773/j.issn.1005-264x.2008.04.018 |
[37] |
HASSINK J, BOUWMAN L A, ZWART K B, et al. Relationships between habitable pore space, soil biota and mineralization rates in grassland soils[J]. Soil biology and biochemistry, 1993, 25(1):47-55.
doi: 10.1016/0038-0717(93)90240-C URL |
[38] | 周煜杰, 贾夏, 赵永华, 等. 森林生态系统土壤真菌群落及其影响因素研究进展[J]. 生态环境学报, 2020, 29(8):1703-1712. |
[39] |
MICHAEL H B. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems[J]. Ecological monographs, 1992, 62(4):569-591.
doi: 10.2307/2937317 URL |
[40] | 高珊, 尹航, 傅民杰, 等. 冻融循环对温带3种林型下土壤微生物量碳、氮和氮矿化的影响[J]. 生态学报, 2018, 38(21):7859-7869. |
[41] | 王常慧, 邢雪荣, 韩兴国. 草地生态系统中土壤氮素矿化影响因素的研究进展[J]. 应用生态学报, 2004(11):2184-2188. |
[42] | 龚伟, 胡庭兴, 王景燕, 等. 川南天然常绿阔叶林人工更新后枯落物对土壤供氮潜力的影响[J]. 北京林业大学学报, 2006(S2):64-72. |
[43] |
TAO K, KELLY S, RADUTOIU S. Microbial associations enabling nitrogen acquisition in plants[J]. Current opinion in microbiology, 2019, 49:83-89.
doi: S1369-5274(19)30059-1 pmid: 31733615 |
[44] |
ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature microbiology, 2018, 3(4):470-480.
doi: 10.1038/s41564-018-0129-3 pmid: 29556109 |
[45] | 刘王锁, 李海泉, 何毅, 等. 根际微生物对植物与土壤交互调控的研究进展[J]. 中国土壤与肥料, 2021(5):318-327. |
[46] |
BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual review of plant biology, 2006, 57:233-266.
pmid: 16669762 |
[47] |
HAICHAR F E Z, MAROL C, BERGE O, et al. Plant host habitat and root exudates shape soil bacterial community structure[J]. The ISME Journal, 2008, 2(12):1221-1230.
doi: 10.1038/ismej.2008.80 URL |
[48] |
WANG Q T, XIAO J, DING J X, et al. Differences in root exudate inputs and rhizosphere effects on soil N transformation between deciduous and evergreen trees[J]. Plant and soil, 2021, 458(1-2):277-289.
doi: 10.1007/s11104-019-04156-0 URL |
[49] |
LIU Y, EVANS S E, FRIESEN M L, et al. Root exudates shift how N mineralization and N fixation contribute to the plant-available N supply in low fertility soils[J]. Soil biology and biochemistry, 2022, 165:108541.
doi: 10.1016/j.soilbio.2021.108541 URL |
[50] |
YUAN Y S, ZHAO W Q, ZHANG Z L, et al. Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots[J]. Soil biology & biochemistry, 2018, 121:16-23.
doi: 10.1016/j.soilbio.2018.03.002 URL |
[51] |
DRAKE J E, DARBY B A, GIASSON M A, et al. Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest[J]. Biogeosciences, 2013, 10(2):821-838.
doi: 10.5194/bg-10-821-2013 URL |
[1] | HONG Ciqing, SUN Yuyao, MO Wenjing, FANG Yun, CHEN Fangrong, GUI Fangze, GUAN Xiong, PAN Xiaohong. Effects of Nano-silver Prepared from Tea Extract on Soil Microorganisms [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 56-63. |
[2] | Xie Yun, Guo Fangyun, Cao Bing. Elevated CO2 Concentrations: Effects on Soil Microbial Quantity and Enzyme Activity in Root Zone of Lycium barbarum [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 90-97. |
[3] | Li Linrong, Feng Jianlu, Liu Miaomiao, Mei Hao, Kang Zhenye, Cai Qingnian. Effect of Crop Planting Patterns on Soil Microorganisms and Crop Pests in Farmland [J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 99-106. |
[4] | Wang Qiuhong, Song Baiquan, Wang Xiaochun, Jing Ruonan, Yang Xiya, Zhou Jianchao. Distribution Characteristics of Beet Root Exudates in Seedling Stage [J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 13-18. |
[5] | Zhao Xuetong, Xu Siqi, Zhang Qi, Pan Wenzheng, Shang Haili, Wang Bin, Wang Jingxian, Zhao Rongbiao. Effect of Walnut Special Bio-organic-inorganic Compound Fertilizer on Walnut Planting [J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 108-113. |
[6] | Dong Wen, Zhang Qing, Luo Tao, Wang Huangping. Effects of Continuous Application of Different Organic Fertilizers on Soil Quality [J]. Chinese Agricultural Science Bulletin, 2020, 36(28): 106-110. |
[7] | . Crop Continuous Cropping Obstacles: Research Progress [J]. Chinese Agricultural Science Bulletin, 2019, 35(10): 36-42. |
[8] | . Study on the allelopathic autotoxicity of pepper root exudate by different collection methods [J]. Chinese Agricultural Science Bulletin, 2015, 31(31): 62-67. |
[9] | Liu Juan,Zhang Jun,Zang Xiuwang,Tang Fengshou,Dong Wenzhao,Miao Lijuan,Xu Jing and Zhang Zhongxin. Research Advances in Continuous Cropping Obstacles and Root Exudates Autotoxicity of Peanut [J]. Chinese Agricultural Science Bulletin, 2015, 31(30): 101-105. |
[10] | . A Review of Plant Root Exudates [J]. Chinese Agricultural Science Bulletin, 2014, 30(35): 314-320. |
[11] | . Research Progress of Soil Enzymology and Microbiology Effects Affected by Straw Incorporation [J]. Chinese Agricultural Science Bulletin, 2014, 30(18): 1-7. |
[12] | Cheng Xing’an1, Liu Zhanmei1, Zhou Yuzhe1, Jiang Xuhong1,Sammy Zheng2. Identification of Camptothecin, Hydroxycamptothecin and Other Components in Camptotheca acuminata Hydroponic System [J]. Chinese Agricultural Science Bulletin, 2014, 30(1): 37-41. |
[13] | . Effects of Phosphorus Stress on the Root Morphology and Root Exudates in Different Sugar Beet Genotypes [J]. Chinese Agricultural Science Bulletin, 2011, 27(2): 157-161. |
[14] | . Comparison of two methods in evaluating the allelopathic potential of root exudates from Ageratina adenophora (Sprengel) [J]. Chinese Agricultural Science Bulletin, 2010, 26(22): 297-300. |
[15] | . Allelopathic effects of ginseng root exudates on four medicinal plants [J]. Chinese Agricultural Science Bulletin, 2010, 26(19): 140-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||