Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (6): 102-106.doi: 10.11924/j.issn.1000-6850.casb2021-0333
Previous Articles Next Articles
ZHAO Yue(), ZHANG Xiaoyan, CAO Kun, HAN Chengwei, JIANG Ying, BIAN Jing, WANG Xiaonan(
), SUN Yufeng(
)
Received:
2021-03-31
Revised:
2021-07-08
Online:
2022-02-25
Published:
2022-03-16
Contact:
WANG Xiaonan,SUN Yufeng
E-mail:15245990291@163.com;wxn-fern@163.com;sunyf888@163.com
CLC Number:
ZHAO Yue, ZHANG Xiaoyan, CAO Kun, HAN Chengwei, JIANG Ying, BIAN Jing, WANG Xiaonan, SUN Yufeng. Physiology and Molecular Mechanism of Stress Resistance in Hemp: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 102-106.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0333
[1] | 胡华冉, 刘浩, 邓纲, 等. 不同盐碱胁迫对大麻种子萌发和幼苗生长的影响[J]. 植物资源与环境学报, 2015, 24(4):61-68. |
[2] | 马洪雨, 王瑞君, 王显生, 等. 黄麻种质芽期和苗期耐盐性的鉴定与评价[J]. 植物遗传资源学报, 2009, 10(2):236-243. |
[3] | 曹焜, 韩承伟, 潘冬梅, 等. 盐碱胁迫对2个工业大麻品种的影响及其改良效果研究[J]. 新农业, 2019(1):4-6. |
[4] | 程霞, 苏源, 窦玉敏, 等. 盐胁迫下工业大麻苗期生理生化特性的研究[J]. 昆明学院学报,2016, 38(6):81-84. |
[5] | 胡华冉. 盐碱胁迫对大麻种子萌芽和生长的影响[D]. 昆明:云南大学, 2015. |
[6] | 刘家佳. 工业大麻盐胁迫转录组学研究[D]. 昆明:云南大学, 2016. |
[7] | 程霞. 工业大麻响应盐胁迫的蛋白应激机制研究[D]. 昆明:云南大学, 2016. |
[8] | TANG K L, FRACASSO A, STRUIK P C, et al. Water- and nitrogen-use efficiencies of hemp (Cannabis sativa L.) based on whole-canopy measurements and modeling[J]. Frontiers in plant science, 2018(9):951. |
[9] | 郭媛, 王玉富, 邱财生, 等. 干旱胁迫对不同大麻品种生理特性和生长的影响研究初报[J]. 中国麻业科学, 2011, 33(5):235-239. |
[10] | 杜光辉, 周波, 杨阳, 等. PEG模拟干旱胁迫下不同大麻品种萌发期抗旱性评价[J]. 中国农学通报, 2015, 31(33):147-153. |
[11] | 孔佳茜, 赵铭森, 孟晓康, 等. PEG模拟干旱胁迫对大麻种子萌发的影响[J]. 种子, 2020, 39(9):26-30,52. |
[12] | GAO C S, CHENG C H, ZHAO L N, et al. Genome-wide expression profiles of hemp (Cannabis sativa L.) in Response to Drought Stress[J]. International journal of genomics, 2018(5):1-13. |
[13] |
WANG W, WANG L, WANG L, et al. Transcriptome analysis and molecular mechanism of linseed (Linum usitatissimum L.) drought tolerance under repeated drought using single-molecule long-read sequencing[J]. BMC genomics, 2021, 22(1):109.
doi: 10.1186/s12864-021-07416-5 URL |
[14] |
TANG K L, STRUIK P C, AMADUCCI S, et al. Hemp (Cannabis sativa L.) leaf photosynjournal in relation to nitrogen content and temperature: implications for hemp as a bio-economically sustainable crop[J]. GCB bioenergy, 2017, 9(10):1573-1587.
doi: 10.1111/gcbb.2017.9.issue-10 URL |
[15] | 袁青. 大麻生长和纤维细胞发育对氮营养的响应[D]. 昆明:云南大学, 2017. |
[16] | 徐云. 大麻钾营养及耐低钾胁迫研究[D]. 昆明:云南大学, 2016. |
[17] | 李璇, 卜秋力, 李光菊, 等. 磷对工业大麻苗期生长生理影响研究[J]. 云南大学学报:自然科学版, 2019, 41(5):1031-1037. |
[18] |
LINGER P, MÜSSIG J, FISCHER H, et al. Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential[J]. Industrial crops and products, 2002, 16(1):33-42.
doi: 10.1016/S0926-6690(02)00005-5 URL |
[19] |
CITTERIO S, SANTAGOSTINO A, FUMAGALLI P, et al. Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L.[J]. Plant and soil, 2003, 256(2):243-252.
doi: 10.1023/A:1026113905129 URL |
[20] | CANDITO M D, RANALLI P, RE L D. Heavy metal tolerance and uptake of Cd, Pb and Tl by hemp[J]. Advances in horticultural science, 2004, 18(3):138-144. |
[21] |
MEERS E, RUTTENS A, HOPGOOD M J, et al. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils[J]. Chemosphere, 2005, 61(4):561-572.
doi: 10.1016/j.chemosphere.2005.02.026 URL |
[22] | SOUDEK P, VALENOVA S, VANEK T. Study of radiophytoremediation on heavily polluted area in South Bohemia[M]. Springer Berlin Heidelberg, 2006:519-524. |
[23] |
HOSEINI P S, POURSAFA P, MOATTAR F, et al. Ability of phytoremediation for absorption of strontium and cesium from soils using Cannabis sativa[J]. International journal of environmental health engineering, 2012, 1(1):17.
doi: 10.4103/2277-9183.96004 URL |
[24] |
STONEHOUSE G C, MCCARRON B J, GUIGNARDI Z S, et al. Selenium metabolism in hemp (Cannabis sativa L.)-potential for phytoremediation and biofortification.[J]. Environmental science and technology, 2020, 54(7):4221-4230.
doi: 10.1021/acs.est.9b07747 URL |
[25] | 梁淑敏, 许艳萍, 陈裕, 等 .工业大麻对重金属污染土壤的治理研究进展[J].生态学报, 2013, 33(5):1347-1351,1353-1356. |
[26] | 许艳萍, 郭孟璧, 张庆滢, 等. 铅(Pb)胁迫对工业大麻苗期生理生化及富集特征的影响[J]. 西部林业科学, 2018, 47(3):1-6,40. |
[27] |
许艳萍, 杨明, 郭鸿彦, 等. 5个工业大麻品种对5种重金属污染土壤的修复潜力[J]. 作物学报, 2020, 46(12):1970-1978.
doi: 10.3724/SP.J.1006.2020.04010 |
[28] | 许艳萍, 陈璇, 郭孟璧, 等. 工业大麻“云麻2号”对重金属Pb、Cu和Cd富集特征的研究[J]. 中国麻业科学, 2015, 37(1):21-25,34. |
[29] | 许艳萍, 吕品, 张庆滢, 等. 不同工业大麻品种对田间5种重金属吸收积累特性的比较[J]. 农业资源与环境学报, 2020, 37(1):106-114. |
[30] |
HUANG Y M, LI D F, ZHAO L N, et al. Comparative transcriptome combined with physiological analyses revealed key factors for differential cadmium tolerance in two contrasting hemp (Cannabis sativa L.) cultivars[J]. Industrial crops and products, 2019, 140(15):111638.
doi: 10.1016/j.indcrop.2019.111638 URL |
[31] |
MEERS E, RUTTENS A, HOPGOOD M, et al. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils[J]. Chemosphere, 2005, 61(4):561-572.
doi: 10.1016/j.chemosphere.2005.02.026 URL |
[32] | 史刚荣. 耐重金属胁迫的能源植物筛选及其适应性研究[D]. 南京:南京农业大学, 2009. |
[33] |
SOLDATOVA N A, KHRYANIN V N. The effects of heavy metal salts on the phytohormonal status and sex expression in marijuana[J]. Russian journal of plant physiology, 2010, 57(1):96-100.
doi: 10.1134/S1021443710010139 URL |
[34] |
BEYER E M. A Potent Inhibitor of Ethylene Action in Plants[J]. Plant Physiology, 1976, 58(3):268-271.
doi: 10.1104/pp.58.3.268 URL |
[35] | YIN M, PAN G, TAO J, et al. Genome-wide identification of MYB gene family reveals their potential functions in cadmium stress response and the regulation of cannabinoid biosynthesis in hemp Cannabis sativa #L.).2021, doi: 10.21203/rs.3.rs-156720/v2. |
[36] | 杜光辉, 周波, 杨阳, 等. PEG模拟干旱胁迫下不同大麻品种萌发期抗旱性评价[J]. 中国农学通报, 2015, 31(33):147-153. |
[37] | 揭雨成, 苎麻抗逆基因的挖掘与应用[D]. 长沙:湖南农业大学, 2013-03-11. |
[38] | 杜彦斌. 5个胡麻品种抗旱性的综合评价[D]. 兰州:甘肃农业大学, 2018. |
[39] | 赵利, 王斌, 赵玮, 齐燕妮. 胡麻品种苗期抗旱性综合鉴定与评价[J]. 干旱区资源与环境, 2019, 33(12):179-185. |
[40] | 孙士涛, 郭兵, 余永廷, 等. 外源物质在苎麻修复镉污染土壤中的应用研究进展[J]. 中国麻业科学, 2018, 40(5):239-243. |
[41] | 李进, 张军高, 刘梦丽, 等. 4种外源物质对低温胁迫下棉花(Gossypium hirsutum)幼苗的缓解效应分析[J]. 分子植物育种, 2019, 17(17):5792-5800. |
[42] | 耿贵, 李任任, 吕春华, 等. 外源调节物质对盐胁迫下植物生长调控研究进展[J]. 中国农学通报, 2020, 36(24):85-90. |
[43] |
ALI N, RETHORE E, YVIN J C, et al. The regulatory role of silicon in mitigating plant nutritional stresses[J]. Plants, 2020, 9(12):1779.
doi: 10.3390/plants9121779 URL |
[44] | 李乐乐, 李中阳, 吴大付, 等. 外源物质对镉胁迫下不同品种冬小麦苗期镉吸收特征的影响[J]. 灌溉排水学报, 2021, 40(1):79-90. |
[45] | 姜颖, 左官强, 王晓楠, 等. 烯效唑浸种对干旱胁迫下工业大麻幼苗形态、渗透调节物质及内源激素的影响[J]. 干旱地区农业研究, 2020, 38(3):74-80. |
[46] | 李光菊. 外源物质对大麻萌发期和苗期干旱的缓解效应研究[D]. 昆明:云南大学, 2018. |
[47] |
LANDI S, BERNI R, CAPASSO G, et al. Impact of nitrogen nutrition on cannabis sativa: an update on the current knowledge and future prospects[J]. International journal of molecular sciences, 2019, 20(22):5803.
doi: 10.3390/ijms20225803 URL |
[48] |
AHMED S, GAO X F, JAHAN M A, et al. Nanoparticle-based genetic transformation of Cannabis sativa[J]. Journal of biotechnology, 2020, 326:48-51.
doi: 10.1016/j.jbiotec.2020.12.014 URL |
[49] |
FEENEY M, PUNJA Z K. Tissue culture and Agrobacterium -mediated transformation of hemp (Cannabis sativa L.)[J]. In vitro cellular and developmental biology-plant, 2003, 39(6):578-585.
doi: 10.1079/IVP2003454 URL |
[50] | JARZINA A S, PONITKA A, KACZMAREK Z. Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of Cannabis sativa L.[J]. Acta biologica cracoviensia. series botanica, 2005, 47(2):145-151. |
[1] | GAO Zhongchao, SUN Lei, WANG Lihua, DU Chunying, ZHANG Liguo, ZHANG Jiuming, WANG Wei, GU Wei. Effects of Different Contents of Cd2+ in Soil on Growth and Development of Hemp and Soybean Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 89-92. |
[2] | Zhang Xiaoyan, Sun Yufeng, Cao Kun, Jiang Ying, Zhao Yue, Hang Chengwei, Han Xicai, Wang Xiaonan. Main Agronomic Characters of Female and Male Plant of Fiber Industrial Hemp: A Preliminary Study [J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 1-6. |
[3] | . Over-expression of OsCATb Enhanced E. coli Stress Tolerance to Heavy Metals [J]. Chinese Agricultural Science Bulletin, 2018, 34(34): 36-41. |
[4] | . Heavy Metal Stress on Growth and Development and Physiological Indexes of Wheat [J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 1-8. |
[5] | 李凤麟. Compound Treatment Effects of Water and Heavy Metal on Growth of Panicum repens L. [J]. Chinese Agricultural Science Bulletin, 2017, 33(18): 56-60. |
[6] | . Evaluation of Drought Stress of Hemp at Seed Germination Stage Under PEG Simulation [J]. Chinese Agricultural Science Bulletin, 2015, 31(33): 147-153. |
[7] | Tong Fangping,Li Gui,Yang Wuxiang,Shi Wenfeng,Liu Zhenghua,Chen Rui and Wu Min. Study on the Characteristics of Heavy Metal Accumulation in Ligustrum lucidum in An Antimony Mine [J]. Chinese Agricultural Science Bulletin, 2015, 31(30): 244-248. |
[8] | . Effects of Potassium Nutrition on Growth and Potassium Uptake and Utilization Efficiency of Hemp [J]. Chinese Agricultural Science Bulletin, 2015, 31(27): 132-136. |
[9] | . Proteomics Analysis of 6-BA on Rice Seedlings Roots Growth under Nutrient Stress Condition [J]. Chinese Agricultural Science Bulletin, 2014, 30(27): 202-207. |
[10] | . Optimization of ISSR Reaction System of Hemp and Elementary Screening of Primers [J]. Chinese Agricultural Science Bulletin, 2014, 30(12): 105-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||